-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdocker-compose.yaml
923 lines (783 loc) · 26.7 KB
/
docker-compose.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
services:
agent-manager:
command:
- agent-manager-react
- -p
- pulsar://pulsar:6650
- --tool-type
- uk-legislation=knowledge-query
- general-knowledge=text-completion
- primary-legislation-schedule=knowledge-query
- --tool-description
- uk-legislation=Query a knowledge base for information about UK legislation
passed in 2024. The query should be a simple natural language question.
- general-knowledge=Query a general database of knowledge. This will not
provide domain-specific knowledge. The query should be a simple natural
language question.
- primary-legislation-schedule=Query a knowledge base about the schedule of
primary legilsation coming from UK parliament. The query should be
a simple natural language question.
- --tool-argument
- uk-legislation=query:string:Describe the search query here.
- general-knowledge=query:string:Describe the search query here.
- primary-legislation-schedule=query:string:Describe the search query here.
deploy:
resources:
limits:
cpus: '0.5'
memory: 128M
reservations:
cpus: '0.1'
memory: 128M
image: docker.io/trustgraph/trustgraph-flow:0.17.6
restart: on-failure:100
api-gateway:
command:
- api-gateway
- -p
- pulsar://pulsar:6650
- --timeout
- '600'
- --port
- '8088'
deploy:
resources:
limits:
cpus: '0.5'
memory: 256M
reservations:
cpus: '0.1'
memory: 256M
environment:
GATEWAY_SECRET: ${GATEWAY_SECRET}
image: docker.io/trustgraph/trustgraph-flow:0.17.6
ports:
- 8000:8000
- 8088:8088
restart: on-failure:100
chunker:
command:
- chunker-recursive
- -p
- pulsar://pulsar:6650
- --chunk-size
- '1000'
- --chunk-overlap
- '50'
deploy:
resources:
limits:
cpus: '0.5'
memory: 128M
reservations:
cpus: '0.1'
memory: 128M
image: docker.io/trustgraph/trustgraph-flow:0.17.6
restart: on-failure:100
embeddings:
command:
- embeddings-hf
- -p
- pulsar://pulsar:6650
- -m
- all-MiniLM-L6-v2
deploy:
resources:
limits:
cpus: '1.0'
memory: 400M
reservations:
cpus: '0.5'
memory: 400M
image: docker.io/trustgraph/trustgraph-flow:0.17.6
restart: on-failure:100
grafana:
deploy:
resources:
limits:
cpus: '1.0'
memory: 256M
reservations:
cpus: '0.5'
memory: 256M
environment:
GF_ORG_NAME: trustgraph.ai
image: docker.io/grafana/grafana:11.1.4
ports:
- 3000:3000
restart: on-failure:100
volumes:
- grafana-storage:/var/lib/grafana
- ./grafana/provisioning/:/etc/grafana/provisioning/dashboards/
- ./grafana/provisioning/:/etc/grafana/provisioning/datasources/
- ./grafana/dashboards/:/var/lib/grafana/dashboards/
graph-rag:
command:
- graph-rag
- -p
- pulsar://pulsar:6650
- --prompt-request-queue
- non-persistent://tg/request/prompt-rag
- --prompt-response-queue
- non-persistent://tg/response/prompt-rag
- --entity-limit
- '50'
- --triple-limit
- '30'
- --max-subgraph-size
- '3000'
deploy:
resources:
limits:
cpus: '0.5'
memory: 128M
reservations:
cpus: '0.1'
memory: 128M
image: docker.io/trustgraph/trustgraph-flow:0.17.6
restart: on-failure:100
init-pulsar:
command:
- tg-init-pulsar
- -p
- http://pulsar:8080
deploy:
resources:
limits:
cpus: '1'
memory: 128M
reservations:
cpus: '0.1'
memory: 128M
image: docker.io/trustgraph/trustgraph-flow:0.17.6
restart: on-failure:100
kg-extract-definitions:
command:
- kg-extract-definitions
- -p
- pulsar://pulsar:6650
deploy:
resources:
limits:
cpus: '0.5'
memory: 128M
reservations:
cpus: '0.1'
memory: 128M
image: docker.io/trustgraph/trustgraph-flow:0.17.6
restart: on-failure:100
kg-extract-relationships:
command:
- kg-extract-relationships
- -p
- pulsar://pulsar:6650
deploy:
resources:
limits:
cpus: '0.5'
memory: 128M
reservations:
cpus: '0.1'
memory: 128M
image: docker.io/trustgraph/trustgraph-flow:0.17.6
restart: on-failure:100
kg-extract-topics:
command:
- kg-extract-topics
- -p
- pulsar://pulsar:6650
deploy:
resources:
limits:
cpus: '0.5'
memory: 128M
reservations:
cpus: '0.1'
memory: 128M
image: docker.io/trustgraph/trustgraph-flow:0.17.6
restart: on-failure:100
lab:
deploy:
resources:
limits:
cpus: '1.0'
memory: 512M
reservations:
cpus: '0.5'
memory: 512M
environment:
QUICK_CONNECT_MG_HOST: memgraph
QUICK_CONNECT_MG_PORT: '7687'
image: docker.io/memgraph/lab:2.19.1
ports:
- 3010:3000
restart: on-failure:100
memgraph:
deploy:
resources:
limits:
cpus: '1.0'
memory: 1000M
reservations:
cpus: '0.5'
memory: 1000M
image: docker.io/memgraph/memgraph-mage:1.22-memgraph-2.22
ports:
- 7474:7474
- 7687:7687
restart: on-failure:100
metering:
command:
- metering
- -p
- pulsar://pulsar:6650
deploy:
resources:
limits:
cpus: '0.5'
memory: 128M
reservations:
cpus: '0.1'
memory: 128M
image: docker.io/trustgraph/trustgraph-flow:0.17.6
restart: on-failure:100
metering-rag:
command:
- metering
- -p
- pulsar://pulsar:6650
- -i
- non-persistent://tg/response/text-completion-rag
deploy:
resources:
limits:
cpus: '0.5'
memory: 128M
reservations:
cpus: '0.1'
memory: 128M
image: docker.io/trustgraph/trustgraph-flow:0.17.6
restart: on-failure:100
pdf-decoder:
command:
- pdf-decoder
- -p
- pulsar://pulsar:6650
deploy:
resources:
limits:
cpus: '0.5'
memory: 128M
reservations:
cpus: '0.1'
memory: 128M
image: docker.io/trustgraph/trustgraph-flow:0.17.6
restart: on-failure:100
prometheus:
deploy:
resources:
limits:
cpus: '0.5'
memory: 128M
reservations:
cpus: '0.1'
memory: 128M
image: docker.io/prom/prometheus:v2.53.2
ports:
- 9090:9090
restart: on-failure:100
volumes:
- ./prometheus:/etc/prometheus/
- prometheus-data:/prometheus
prompt:
command:
- prompt-template
- -p
- pulsar://pulsar:6650
- --text-completion-request-queue
- non-persistent://tg/request/text-completion
- --text-completion-response-queue
- non-persistent://tg/response/text-completion
- --system-prompt
- 'You are a helpful assistant that performs NLP, Natural Language Processing,
tasks.
'
- --prompt
- "agent-react=Answer the following questions as best you can. You have\naccess\
\ to the following functions:\n\n{% for tool in tools %}{\n \"function\"\
: \"{{ tool.name }}\",\n \"description\": \"{{ tool.description }}\",\n \
\ \"arguments\": [\n{% for arg in tool.arguments %} {\n \
\ \"name\": \"{{ arg.name }}\",\n \"type\": \"{{ arg.type }}\",\n\
\ \"description\": \"{{ arg.description }}\",\n }\n{% endfor\
\ %}\n ]\n}\n{% endfor %}\n\nYou can either choose to call a function to\
\ get more information, or\nreturn a final answer.\n \nTo call a function,\
\ respond with a JSON object of the following format:\n\n{\n \"thought\"\
: \"your thought about what to do\",\n \"action\": \"the action to take,\
\ should be one of [{{tool_names}}]\",\n \"arguments\": {\n \"argument1\"\
: \"argument_value\",\n \"argument2\": \"argument_value\"\n }\n}\n\
\nTo provide a final answer, response a JSON object of the following format:\n\
\n{\n \"thought\": \"I now know the final answer\",\n \"final-answer\": \"\
the final answer to the original input question\"\n}\n\nPrevious steps are included\
\ in the input. Each step has the following\nformat in your output:\n\n{\n\
\ \"thought\": \"your thought about what to do\",\n \"action\": \"the action\
\ taken\",\n \"arguments\": {\n \"argument1\": action argument,\n \
\ \"argument2\": action argument2\n },\n \"observation\": \"the result of\
\ the action\",\n}\n\nRespond by describing either one single thought/action/arguments\
\ or\nthe final-answer. Pause after providing one action or final-answer.\n\
\n{% if context %}Additional context has been provided:\n{{context}}{% endif\
\ %}\n\nQuestion: {{question}}\n\nInput:\n \n{% for h in history %}\n{\n\
\ \"action\": \"{{h.action}}\",\n \"arguments\": [\n{% for k, v in h.arguments.items()\
\ %} {\n \"{{k}}\": \"{{v}}\",\n{%endfor%} }\n ],\n\
\ \"observation\": \"{{h.observation}}\"\n}\n{% endfor %}"
- 'document-prompt=Study the following context. Use only the information provided
in the context in your response. Do not speculate if the answer is not found
in the provided set of knowledge statements.
Here is the context:
{{documents}}
Use only the provided knowledge statements to respond to the following:
{{query}}
'
- 'extract-definitions=Study the following text and derive definitions for any
discovered entities. Do not provide definitions for entities whose definitions
are incomplete or unknown. Output relationships in JSON format as an array of
objects with keys:
- entity: the name of the entity
- definition: English text which defines the entity
Here is the text:
{{text}}
Requirements:
- Do not provide explanations.
- Do not use special characters in the response text.
- The response will be written as plain text.
- Do not include null or unknown definitions.
- The response shall use the following JSON schema structure:
```json
[{"entity": string, "definition": string}]
```'
- 'extract-relationships=Study the following text and derive entity relationships. For
each relationship, derive the subject, predicate and object of the relationship.
Output relationships in JSON format as an array of objects with keys:
- subject: the subject of the relationship
- predicate: the predicate
- object: the object of the relationship
- object-entity: FALSE if the object is a simple data type and TRUE if the object
is an entity
Here is the text:
{{text}}
Requirements:
- You will respond only with well formed JSON.
- Do not provide explanations.
- Respond only with plain text.
- Do not respond with special characters.
- The response shall use the following JSON schema structure:
```json
[{"subject": string, "predicate": string, "object": string, "object-entity":
boolean}]
```
'
- 'extract-rows=<instructions>
Study the following text and derive objects which match the schema provided.
You must output an array of JSON objects for each object you discover
which matches the schema. For each object, output a JSON object whose fields
carry the name field specified in the schema.
</instructions>
<schema>
{{schema}}
</schema>
<text>
{{text}}
</text>
<requirements>
You will respond only with raw JSON format data. Do not provide
explanations. Do not add markdown formatting or headers or prefixes.
</requirements>'
- "extract-topics=Read the provided text carefully. You will identify topics and\
\ their definitions found in the provided text. Topics are intangible concepts.\n\
\nReading Instructions:\n- Ignore document formatting in the provided text.\n\
- Study the provided text carefully for intangible concepts.\n\nHere is the\
\ text:\n{{text}}\n\nResponse Instructions: \n- Do not respond with special\
\ characters.\n- Return only topics that are concepts and unique to the provided\
\ text.\n- Respond only with well-formed JSON.\n- The JSON response shall be\
\ an array of objects with keys \"topic\" and \"definition\". \n- The response\
\ shall use the following JSON schema structure:\n\n```json\n[{\"topic\": string,\
\ \"definition\": string}]\n```\n\n- Do not write any additional text or explanations."
- 'kg-prompt=Study the following set of knowledge statements. The statements are
written in Cypher format that has been extracted from a knowledge graph. Use
only the provided set of knowledge statements in your response. Do not speculate
if the answer is not found in the provided set of knowledge statements.
Here''s the knowledge statements:
{% for edge in knowledge %}({{edge.s}})-[{{edge.p}}]->({{edge.o}})
{%endfor%}
Use only the provided knowledge statements to respond to the following:
{{query}}
'
- question={{question}}
- --prompt-response-type
- agent-react=json
- document-prompt=text
- extract-definitions=json
- extract-relationships=json
- extract-rows=json
- extract-topics=json
- kg-prompt=text
- --prompt-schema
- extract-definitions={"items":{"properties":{"definition":{"type":"string"},"entity":{"type":"string"}},"required":["entity","definition"],"type":"object"},"type":"array"}
- extract-relationships={"items":{"properties":{"object":{"type":"string"},"object-entity":{"type":"boolean"},"predicate":{"type":"string"},"subject":{"type":"string"}},"required":["subject","predicate","object","object-entity"],"type":"object"},"type":"array"}
- extract-topics={"items":{"properties":{"definition":{"type":"string"},"topic":{"type":"string"}},"required":["topic","definition"],"type":"object"},"type":"array"}
- --prompt-term
deploy:
resources:
limits:
cpus: '0.5'
memory: 128M
reservations:
cpus: '0.1'
memory: 128M
image: docker.io/trustgraph/trustgraph-flow:0.17.6
restart: on-failure:100
prompt-rag:
command:
- prompt-template
- -p
- pulsar://pulsar:6650
- -i
- non-persistent://tg/request/prompt-rag
- -o
- non-persistent://tg/response/prompt-rag
- --text-completion-request-queue
- non-persistent://tg/request/text-completion-rag
- --text-completion-response-queue
- non-persistent://tg/response/text-completion-rag
- --system-prompt
- 'You are a helpful assistant that performs NLP, Natural Language Processing,
tasks.
'
- --prompt
- "agent-react=Answer the following questions as best you can. You have\naccess\
\ to the following functions:\n\n{% for tool in tools %}{\n \"function\"\
: \"{{ tool.name }}\",\n \"description\": \"{{ tool.description }}\",\n \
\ \"arguments\": [\n{% for arg in tool.arguments %} {\n \
\ \"name\": \"{{ arg.name }}\",\n \"type\": \"{{ arg.type }}\",\n\
\ \"description\": \"{{ arg.description }}\",\n }\n{% endfor\
\ %}\n ]\n}\n{% endfor %}\n\nYou can either choose to call a function to\
\ get more information, or\nreturn a final answer.\n \nTo call a function,\
\ respond with a JSON object of the following format:\n\n{\n \"thought\"\
: \"your thought about what to do\",\n \"action\": \"the action to take,\
\ should be one of [{{tool_names}}]\",\n \"arguments\": {\n \"argument1\"\
: \"argument_value\",\n \"argument2\": \"argument_value\"\n }\n}\n\
\nTo provide a final answer, response a JSON object of the following format:\n\
\n{\n \"thought\": \"I now know the final answer\",\n \"final-answer\": \"\
the final answer to the original input question\"\n}\n\nPrevious steps are included\
\ in the input. Each step has the following\nformat in your output:\n\n{\n\
\ \"thought\": \"your thought about what to do\",\n \"action\": \"the action\
\ taken\",\n \"arguments\": {\n \"argument1\": action argument,\n \
\ \"argument2\": action argument2\n },\n \"observation\": \"the result of\
\ the action\",\n}\n\nRespond by describing either one single thought/action/arguments\
\ or\nthe final-answer. Pause after providing one action or final-answer.\n\
\n{% if context %}Additional context has been provided:\n{{context}}{% endif\
\ %}\n\nQuestion: {{question}}\n\nInput:\n \n{% for h in history %}\n{\n\
\ \"action\": \"{{h.action}}\",\n \"arguments\": [\n{% for k, v in h.arguments.items()\
\ %} {\n \"{{k}}\": \"{{v}}\",\n{%endfor%} }\n ],\n\
\ \"observation\": \"{{h.observation}}\"\n}\n{% endfor %}"
- 'document-prompt=Study the following context. Use only the information provided
in the context in your response. Do not speculate if the answer is not found
in the provided set of knowledge statements.
Here is the context:
{{documents}}
Use only the provided knowledge statements to respond to the following:
{{query}}
'
- 'extract-definitions=Study the following text and derive definitions for any
discovered entities. Do not provide definitions for entities whose definitions
are incomplete or unknown. Output relationships in JSON format as an array of
objects with keys:
- entity: the name of the entity
- definition: English text which defines the entity
Here is the text:
{{text}}
Requirements:
- Do not provide explanations.
- Do not use special characters in the response text.
- The response will be written as plain text.
- Do not include null or unknown definitions.
- The response shall use the following JSON schema structure:
```json
[{"entity": string, "definition": string}]
```'
- 'extract-relationships=Study the following text and derive entity relationships. For
each relationship, derive the subject, predicate and object of the relationship.
Output relationships in JSON format as an array of objects with keys:
- subject: the subject of the relationship
- predicate: the predicate
- object: the object of the relationship
- object-entity: FALSE if the object is a simple data type and TRUE if the object
is an entity
Here is the text:
{{text}}
Requirements:
- You will respond only with well formed JSON.
- Do not provide explanations.
- Respond only with plain text.
- Do not respond with special characters.
- The response shall use the following JSON schema structure:
```json
[{"subject": string, "predicate": string, "object": string, "object-entity":
boolean}]
```
'
- 'extract-rows=<instructions>
Study the following text and derive objects which match the schema provided.
You must output an array of JSON objects for each object you discover
which matches the schema. For each object, output a JSON object whose fields
carry the name field specified in the schema.
</instructions>
<schema>
{{schema}}
</schema>
<text>
{{text}}
</text>
<requirements>
You will respond only with raw JSON format data. Do not provide
explanations. Do not add markdown formatting or headers or prefixes.
</requirements>'
- "extract-topics=Read the provided text carefully. You will identify topics and\
\ their definitions found in the provided text. Topics are intangible concepts.\n\
\nReading Instructions:\n- Ignore document formatting in the provided text.\n\
- Study the provided text carefully for intangible concepts.\n\nHere is the\
\ text:\n{{text}}\n\nResponse Instructions: \n- Do not respond with special\
\ characters.\n- Return only topics that are concepts and unique to the provided\
\ text.\n- Respond only with well-formed JSON.\n- The JSON response shall be\
\ an array of objects with keys \"topic\" and \"definition\". \n- The response\
\ shall use the following JSON schema structure:\n\n```json\n[{\"topic\": string,\
\ \"definition\": string}]\n```\n\n- Do not write any additional text or explanations."
- 'kg-prompt=Study the following set of knowledge statements. The statements are
written in Cypher format that has been extracted from a knowledge graph. Use
only the provided set of knowledge statements in your response. Do not speculate
if the answer is not found in the provided set of knowledge statements.
Here''s the knowledge statements:
{% for edge in knowledge %}({{edge.s}})-[{{edge.p}}]->({{edge.o}})
{%endfor%}
Use only the provided knowledge statements to respond to the following:
{{query}}
'
- question={{question}}
- --prompt-response-type
- agent-react=json
- document-prompt=text
- extract-definitions=json
- extract-relationships=json
- extract-rows=json
- extract-topics=json
- kg-prompt=text
- --prompt-schema
- extract-definitions={"items":{"properties":{"definition":{"type":"string"},"entity":{"type":"string"}},"required":["entity","definition"],"type":"object"},"type":"array"}
- extract-relationships={"items":{"properties":{"object":{"type":"string"},"object-entity":{"type":"boolean"},"predicate":{"type":"string"},"subject":{"type":"string"}},"required":["subject","predicate","object","object-entity"],"type":"object"},"type":"array"}
- extract-topics={"items":{"properties":{"definition":{"type":"string"},"topic":{"type":"string"}},"required":["topic","definition"],"type":"object"},"type":"array"}
- --prompt-term
deploy:
resources:
limits:
cpus: '0.5'
memory: 128M
reservations:
cpus: '0.1'
memory: 128M
image: docker.io/trustgraph/trustgraph-flow:0.17.6
restart: on-failure:100
pulsar:
command:
- bin/pulsar
- standalone
deploy:
resources:
limits:
cpus: '2.0'
memory: 1500M
reservations:
cpus: '1.0'
memory: 1500M
environment:
PULSAR_MEM: -Xms600M -Xmx600M
image: docker.io/apachepulsar/pulsar:3.3.1
ports:
- 6650:6650
- 8080:8080
restart: on-failure:100
volumes:
- pulsar-data:/pulsar/data
query-doc-embeddings:
command:
- de-query-pinecone
- -p
- pulsar://pulsar:6650
deploy:
resources:
limits:
cpus: '0.5'
memory: 128M
reservations:
cpus: '0.1'
memory: 128M
environment:
PINECONE_API_KEY: ${PINECONE_API_KEY}
image: docker.io/trustgraph/trustgraph-flow:0.17.6
restart: on-failure:100
query-graph-embeddings:
command:
- ge-query-pinecone
- -p
- pulsar://pulsar:6650
deploy:
resources:
limits:
cpus: '0.5'
memory: 128M
reservations:
cpus: '0.1'
memory: 128M
environment:
PINECONE_API_KEY: ${PINECONE_API_KEY}
image: docker.io/trustgraph/trustgraph-flow:0.17.6
restart: on-failure:100
query-triples:
command:
- triples-query-neo4j
- -p
- pulsar://pulsar:6650
- -g
- bolt://memgraph:7687
- --database
- memgraph
deploy:
resources:
limits:
cpus: '0.5'
memory: 128M
reservations:
cpus: '0.1'
memory: 128M
image: docker.io/trustgraph/trustgraph-flow:0.17.6
restart: on-failure:100
store-doc-embeddings:
command:
- de-write-pinecone
- -p
- pulsar://pulsar:6650
deploy:
resources:
limits:
cpus: '0.5'
memory: 128M
reservations:
cpus: '0.1'
memory: 128M
environment:
PINECONE_API_KEY: ${PINECONE_API_KEY}
image: docker.io/trustgraph/trustgraph-flow:0.17.6
restart: on-failure:100
store-graph-embeddings:
command:
- ge-write-pinecone
- -p
- pulsar://pulsar:6650
deploy:
resources:
limits:
cpus: '0.5'
memory: 128M
reservations:
cpus: '0.1'
memory: 128M
environment:
PINECONE_API_KEY: ${PINECONE_API_KEY}
image: docker.io/trustgraph/trustgraph-flow:0.17.6
restart: on-failure:100
store-triples:
command:
- triples-write-neo4j
- -p
- pulsar://pulsar:6650
- -g
- bolt://memgraph:7687
- --database
- memgraph
deploy:
resources:
limits:
cpus: '0.5'
memory: 128M
reservations:
cpus: '0.1'
memory: 128M
image: docker.io/trustgraph/trustgraph-flow:0.17.6
restart: on-failure:100
text-completion:
command:
- text-completion-googleaistudio
- -p
- pulsar://pulsar:6650
- -x
- '8000'
- -t
- '0.170'
- -m
- gemini-1.5-pro-002
deploy:
resources:
limits:
cpus: '0.5'
memory: 128M
reservations:
cpus: '0.1'
memory: 128M
environment:
GOOGLE_AI_STUDIO_KEY: ${GOOGLE_AI_STUDIO_KEY}
image: docker.io/trustgraph/trustgraph-flow:0.17.6
restart: on-failure:100
text-completion-rag:
command:
- text-completion-googleaistudio
- -p
- pulsar://pulsar:6650
- -x
- '8000'
- -t
- '0.170'
- -m
- gemini-1.5-pro-002
- -i
- non-persistent://tg/request/text-completion-rag
- -o
- non-persistent://tg/response/text-completion-rag
deploy:
resources:
limits:
cpus: '0.5'
memory: 128M
reservations:
cpus: '0.1'
memory: 128M
environment:
GOOGLE_AI_STUDIO_KEY: ${GOOGLE_AI_STUDIO_KEY}
image: docker.io/trustgraph/trustgraph-flow:0.17.6
restart: on-failure:100
vectorize:
command:
- embeddings-vectorize
- -p
- pulsar://pulsar:6650
deploy:
resources:
limits:
cpus: '1.0'
memory: 512M
reservations:
cpus: '0.5'
memory: 512M
image: docker.io/trustgraph/trustgraph-flow:0.17.6
restart: on-failure:100
volumes:
grafana-storage: {}
prometheus-data: {}
pulsar-data: {}