-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathConsensusMechanism.py
68 lines (63 loc) · 2.2 KB
/
ConsensusMechanism.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
"""a python version of the R program at https://github.com/psztorc/Truthcoin
"""
#import python_ConsensusMechanism as consensus
import numpy, tools, pc
#import python_CustomMath as custommath
def keep_nums(t):
if type(t)==list:
out=[]
for i in t:
out.append(keep_nums(i))
return out
if type(t)==int:
return False
else:
return True
def GetWeight(Vec, AddMean=0):
"""Takes an array (vector in practice), and returns proportional
distance from zero."""
New = abs(Vec) #Absolute Value
if AddMean == 1: #Add the mean to each element of the vector
New = New + mean(New)
if sum(New) == 0: #Catch an error here
New = New + 1
New = New/sum(New) #Normalize
return(New)
def GetWeight(Vec, AddMean=0):
"""Takes an array (vector in practice), and returns proportional distance from zero."""
New = abs(Vec) #Absolute Value
if AddMean == 1: #Add the mean to each element of the vector
New = New + mean(New)
if sum(New) == 0: #Catch an error here
New = New + 1
New = New/sum(New) #Normalize
return(New)
def main(m, weights):
weights=numpy.array(weights)
#weights=GetWeight(weights)
a=numpy.array(m)
k=keep_nums(m)
a=numpy.ma.masked_array(a, mask=k)
oracle = pc.Oracle(votes=a, weights=weights)
a=oracle.consensus()
return {'outcome':a['Decisions']['DecisionOutcome_Final'],
'author_bonus':a['Decisions']['Author Bonus'],
'participation':a['Participation'],
'certainty':numpy.array(a['Decisions']['Certainty']),
'votecoin_bonus_for_voters':a['Agents']['SmoothRep'],
'truthcoin_bonus_for_voters':a['Agents']['RowBonus']}
if __name__ == "__main__":
m=[[1, 1, 1, 1, 1], ['NA', 'NA', 'NA', 'NA', 'NA'], ['NA', 'NA', 'NA', 'NA', 'NA']]
m=[[1, 1, 1, 1, 0], [0, 0, 0, 0, 1], [0, 0, 0, 0, 0]]
m=[[1, 1, 0, numpy.nan],
[1, 0, 0, 0],
[1, 1, 0, 0],
[1, 1, 1, 0],
[0, 0, 1, 1],
[0, 0, 1, 1]]
#w=[[1294], [1], [1294]]
w=[[1],[1],[1],[1],[1],[1]]
#w=[[1],[2],[3],[4]]
#m=[[0,0,0],[0,1,0],[0,0,1]]
#print(dem_main(m))
print(main(m, w))