Skip to content

Latest commit

 

History

History
99 lines (71 loc) · 3.64 KB

README.md

File metadata and controls

99 lines (71 loc) · 3.64 KB

MADPL

Codes for the paper "Multi-Agent Task-Oriented Dialog Policy Learning with Role-Aware Reward Decomposition", and you can find our paper at arxiv

Cite this paper :

@inproceedings{takanobu2020multi,
  title={Multi-Agent Task-Oriented Dialog Policy Learning with Role-Aware Reward Decomposition},
  author={Takanobu, Ryuichi and Liang, Runze and Huang, Minlie},
  booktitle={ACL},
  pages={625--638},
  year={2020}
}

Data

unzip zip under data directory, or simply running

sh fetch_data.sh

the pre-processed data are under data/processed_data directory

  • data preprocessing will be automatically done if processed_data directory does not exists when running main.py

Use

the best trained model is under data/model_madpl directory

python main.py --test True --load data/model_madpl/selected > result.txt

Run

Command

python main.py {--[option1]=[value1] --[option2]=[value2] ... }

Change the corresponding options to set hyper-parameters:

parser.add_argument('--log_dir', type=str, default='log', help='Logging directory')
parser.add_argument('--data_dir', type=str, default='data', help='Data directory')
parser.add_argument('--save_dir', type=str, default='model_multi', help='Directory to store model')
parser.add_argument('--load', type=str, default='', help='File name to load trained model')
parser.add_argument('--pretrain', type=bool, default=False, help='Set to pretrain')
parser.add_argument('--test', type=bool, default=False, help='Set to inference')
parser.add_argument('--config', type=str, default='multiwoz', help='Dataset to use')
parser.add_argument('--test_case', type=int, default=1000, help='Number of test cases')
parser.add_argument('--save_per_epoch', type=int, default=4, help="Save model every XXX epoches")
parser.add_argument('--print_per_batch', type=int, default=200, help="Print log every XXX batches")

parser.add_argument('--epoch', type=int, default=48, help='Max number of epoch')
parser.add_argument('--process', type=int, default=8, help='Process number')
parser.add_argument('--batchsz', type=int, default=32, help='Batch size')
parser.add_argument('--batchsz_traj', type=int, default=512, help='Batch size to collect trajectories')
parser.add_argument('--policy_weight_sys', type=float, default=2.5, help='Pos weight on system policy pretraining')
parser.add_argument('--policy_weight_usr', type=float, default=4, help='Pos weight on user policy pretraining')
parser.add_argument('--lr_policy', type=float, default=1e-3, help='Learning rate of dialog policy')
parser.add_argument('--lr_vnet', type=float, default=3e-5, help='Learning rate of value network')
parser.add_argument('--weight_decay', type=float, default=1e-5, help='Weight decay (L2 penalty)')
parser.add_argument('--gamma', type=float, default=0.99, help='Discounted factor')
parser.add_argument('--clip', type=float, default=10, help='Gradient clipping')
parser.add_argument('--interval', type=int, default=400, help='Update interval of target network')

We have implemented distributed RL for parallel trajectory sampling. You can set --process to change the number of multi-process, and set --batchsz_traj to change the number of trajectories each process collects before one update iteration.

pretrain

python main.py --pretrain True --save_dir model_pre

NOTE: please pretrain the model first

train

python main.py --load model_pre/best --lr_policy 1e-4 --save_dir model_RL --save_per_epoch 1

test

python main.py --test True --load model_RL/best

Requirements

python 3

pytorch >= 1.2