-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcluster.py
23 lines (18 loc) · 827 Bytes
/
cluster.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
from sklearn.cluster import KMeans
from load_data import *
from sklearn.metrics import silhouette_score
def cluster_heart(n_clusters, features):
model = KMeans(n_clusters= n_clusters)
y_pred = model.fit_predict(features)
silhouette_avg = silhouette_score(features, y_pred)
print(f"n_clusters={n_clusters}, silhouette_score is {silhouette_avg:.2f}")
y_pred = y_pred.tolist()
with open('data/heart/cluster_labels_train.csv','w',newline='') as f:
csv_writer = csv.writer(f)
for l in y_pred:
csv_writer.writerow([int(l)])
if __name__ =='__main__':
features = load_features_from_csv('./data/heart/x_train_heart.csv')
# for n_clusters in [2,3,5,8,10]:
# cluster_heart(n_clusters=n_clusters, features=features)
cluster_heart(n_clusters=2,features=features)