-
Notifications
You must be signed in to change notification settings - Fork 1
/
metrics.py
142 lines (110 loc) · 3.84 KB
/
metrics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
import torch
import numpy as np
_is_hit_cache = {}
def get_is_hit(scores, ground_truth, topk):
global _is_hit_cache
cacheid = (id(scores), id(ground_truth))
if topk in _is_hit_cache and _is_hit_cache[topk]['id'] == cacheid:
return _is_hit_cache[topk]['is_hit']
else:
device = scores.device
_, col_indice = torch.topk(scores, topk)
row_indice = torch.zeros_like(col_indice) + torch.arange(
scores.shape[0], device=device, dtype=torch.long).view(-1, 1)
is_hit = ground_truth[row_indice.view(-1), col_indice.view(-1)].view(-1, topk)
_is_hit_cache[topk] = {'id': cacheid, 'is_hit': is_hit}
return is_hit
class _Metric:
'''
base class of metrics like HR@k NDCG@k
'''
def __init__(self):
self.start()
@property
def metric(self):
return self._metric
def __call__(self, scores, ground_truth):
'''
- scores: model output
- ground_truth: one-hot test dataset shape=(users, all_POIs).
'''
raise NotImplementedError
def get_title(self):
raise NotImplementedError
def start(self):
'''
clear all
'''
global _is_hit_cache
_is_hit_cache = {}
self._cnt = 0
self._metric = 0
self._sum = 0
def stop(self):
global _is_hit_cache
_is_hit_cache = {}
self._metric = self._sum/self._cnt
class Recall(_Metric):
'''
Recall in top-k samples
'''
def __init__(self, topk):
super().__init__()
self.topk = topk
self.epison = 1e-8
def get_title(self):
return "Recall@{}".format(self.topk)
def __call__(self, scores, ground_truth):
is_hit = get_is_hit(scores, ground_truth, self.topk)
is_hit = is_hit.sum(dim=1)
num_pos = ground_truth.sum(dim=1)
self._cnt += scores.shape[0] - (num_pos == 0).sum().item()
self._sum += (is_hit/(num_pos+self.epison)).sum().item()
class NDCG(_Metric):
'''
NDCG in top-k samples
In this work, NDCG = log(2)/log(1+hit_positions)
'''
def DCG(self, hit, device=torch.device('cpu')):
hit = hit.float()/torch.log2(torch.arange(2, self.topk+2, device=device, dtype=torch.float32))
return hit.sum(-1)
def IDCG(self, num_pos):
hit = torch.zeros(self.topk, dtype=torch.float)
hit[:num_pos] = 1
return self.DCG(hit)
def __init__(self, topk):
super().__init__()
self.topk = topk
self.IDCGs = torch.empty(1 + self.topk, dtype=torch.float)
self.IDCGs[0] = 1 # avoid 0/0
for i in range(1, self.topk + 1):
self.IDCGs[i] = self.IDCG(i)
def get_title(self):
return "NDCG@{}".format(self.topk)
def __call__(self, scores, ground_truth):
device = scores.device
is_hit = get_is_hit(scores, ground_truth, self.topk)
num_pos = ground_truth.sum(dim=1).clamp(0, self.topk).to(torch.long)
dcg = self.DCG(is_hit, device)
idcg = self.IDCGs[num_pos]
ndcg = dcg/idcg.to(device)
self._cnt += scores.shape[0] - (num_pos == 0).sum().item()
self._sum += ndcg.sum().item()
class MRR(_Metric):
'''
Mean reciprocal rank in top-k samples
'''
def __init__(self, topk):
super().__init__()
self.topk = topk
self.denominator = torch.arange(1, self.topk+1, dtype=torch.float)
def get_title(self):
return "MRR@{}".format(self.topk)
def __call__(self, scores, ground_truth):
device = scores.device
is_hit = get_is_hit(scores, ground_truth, self.topk).float()
is_hit /= self.denominator.to(device)
first_hit_rr = is_hit.max(dim=1)[0]
num_pos = ground_truth.sum(dim=1)
self._cnt += scores.shape[0] - (num_pos == 0).sum().item()
self._sum += first_hit_rr.sum().item()