-
Notifications
You must be signed in to change notification settings - Fork 7
/
pem.py
219 lines (188 loc) · 7.29 KB
/
pem.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
import pandas as pd
import joblib
import re
from ekphrasis.classes.preprocessor import TextPreProcessor
from ekphrasis.classes.tokenizer import SocialTokenizer
from collections import Counter
# The following are for specifying typing information:
from pandas.core.series import Series
from typing import Set, Union, List
from re import Pattern
# This shortcut performs faster than `pd.concat`:
concat = pd.np.concatenate
class Pem:
"""
Politeness Estimator for Microblogs.
Typing information was done via:
```shell
monkeytype run __init__.py
monkeytype apply pem
```
"""
threshold = 0.5
use_liwc = False
use_cntVec = False
def __init__(
self,
liwc_path: str = "",
emolex_path: str = "english_emolex.csv",
estimator_path: str = "english_twitter_politeness_estimator.joblib",
feature_defn_path: str = "english_twitter_additional_features.pickle",
countVectorizer_path: str = "",
) -> None:
# Preload LIWC dictionary:
if liwc_path:
liwc_df = pd.read_csv(liwc_path)
liwc_df["*"] = liwc_df["term"].str.endswith("*")
liwc_df["t"] = liwc_df["term"].str.rstrip("*")
self.liwc_prefx = liwc_df[liwc_df["*"]].groupby("category")["t"].apply(set)
self.liwc_whole = liwc_df[~liwc_df["*"]].groupby("category")["t"].apply(set)
self.use_liwc = True
# Preload EmoLex dictionary:
emolex_df = pd.read_csv(emolex_path, index_col=0)
self.emolex = emolex_df.apply(lambda s: set(s[s == 1].index))
# Preload additional feature rules:
pltlex = pd.read_pickle(feature_defn_path)
types = pltlex.apply(type)
self.pltlex_ptn = pltlex[types == re.Pattern].to_dict()
self.pltlex_set = pltlex[types == set].to_dict()
# Initialize Tokenizer:
self.text_processor = TextPreProcessor(
# terms that will be normalized:
normalize=[
"url",
"email",
"percent",
"money",
"phone",
"user",
"time",
"url",
"date",
"number",
],
# terms that will be annotated:
annotate={
"hashtag",
"allcaps",
"elongated",
"repeated",
"emphasis",
"censored",
},
# perform word segmentation on hashtags:
unpack_hashtags=False,
# Unpack contractions (can't -> can not):
unpack_contractions=True,
tokenizer=SocialTokenizer(lowercase=True).tokenize,
)
# preload classifier:
self.clf = joblib.load(estimator_path)
if countVectorizer_path:
self.counter = joblib.load(countVectorizer_path)
self.use_cntVec = True
def load(self, filepath: str = "tweets.csv"):
self.df = pd.read_csv(filepath)
return self
def _tokenizeString(self, s: str) -> List[str]:
"""
_tokenizeString tokenizes a string.
Interestingly, it is faster to put this call into a separate method like this.
"""
return self.text_processor.pre_process_doc(s)
def tokenize(self):
self.df["token"] = self.df["text"].apply(self._tokenizeString)
self.df["token_cnts"] = self.df["token"].apply(Counter)
return self
def vectorizeByLiwc(self, cnts: dict, liwc_whole: dict, liwc_prefx: dict) -> Series:
"""Vectorize by LIWC"""
result = self.countAcrossDicts(cnts, liwc_whole)
for category, tokens in liwc_prefx.items():
for j, n_appearance in cnts.items():
n_prefixes = sum(map(j.startswith, tokens))
result[category] += n_appearance * n_prefixes
return pd.Series(result)
def vectorizeByEmolex(self, cnts: dict, lex: dict) -> Series:
"""Vectorize by EmoLex"""
result = self.countAcrossDicts(cnts, lex)
return pd.Series(result)
def vectorizeByPoliteLex(self, r: Series, patterns: dict, sets: dict) -> Series:
"""Vectorize by PoliteLex"""
result = self.countAcrossDicts(r["token_cnts"], sets)
text = r["text"]
for feature_name, pattern in patterns.items():
# Slightly faster than `sum(1 for m in pattern.finditer(text))`.
result[feature_name] = len(pattern.findall(text))
return pd.Series(result)
@staticmethod
def countAcrossDicts(cnts: dict, sets: dict) -> dict:
result = {}
# This native-Python implementation is faster than DataFrame multiplication.
for feature_name, tokens in sets.items():
tokens_seen = tokens.intersection(cnts)
result[feature_name] = sum(cnts[token] for token in tokens_seen)
return result
def vectorize(self, debug=True):
"""
This function extracts features from the provided texts.
It requires that `self.df` is already prepared.
It writes the prepared features to `self.X`.
"""
if self.use_liwc:
liwc_cnts_df = self.df["token_cnts"].apply(
self.vectorizeByLiwc,
liwc_whole=self.liwc_whole,
liwc_prefx=self.liwc_prefx,
)
emolex_cnts_df = self.df["token_cnts"].apply(
self.vectorizeByEmolex, lex=self.emolex
)
politelex_cnts_df = self.df.apply(
self.vectorizeByPoliteLex,
patterns=self.pltlex_ptn,
sets=self.pltlex_set,
axis=1,
)
if self.use_cntVec:
# Unigrams:
space_separated_texts = self.df["token"].apply(" ".join)
unigram_matrix = self.counter.transform(space_separated_texts)
unigram_matrix = unigram_matrix.todense()
if debug:
if self.use_liwc:
self.liwc_cnts_df = liwc_cnts_df
self.emolex_cnts_df = emolex_cnts_df.astype(int)
self.politelex_cnts_df = politelex_cnts_df
if self.use_cntVec:
self.space_separated_texts = space_separated_texts
self.unigram_df = pd.DataFrame(unigram_matrix, index=self.df.index)
# Combine all feature sets into one table:
all_feats = [
emolex_cnts_df,
politelex_cnts_df,
]
if self.use_liwc:
all_feats.insert(0, liwc_cnts_df)
if self.use_cntVec:
all_feats.append(unigram_matrix)
self.X = concat(all_feats, axis=1)
return self
def predict(self) -> Series:
def scoreToLabel(score):
if score < -self.threshold:
return "Rude"
if score > self.threshold:
return "Polite"
return "Neutral"
scores = self.predict_proba()
labels = scores.apply(scoreToLabel).rename("label")
return labels
def predict_proba(self) -> Series:
probs = self.clf.predict_proba(self.X)
probs_df = pd.DataFrame(probs)
scores = probs_df.loc[:, 1] - probs_df.loc[:, 0]
# Zero out scores that is too insignificant:
scores = scores.apply(
lambda x: 0 if -self.threshold < x < self.threshold else x
)
return scores.rename("score")