-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathGVP_model.py
480 lines (417 loc) · 18.7 KB
/
GVP_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
import torch, functools
import torch.nn as nn
import torch.nn.functional as F
from torch_scatter import scatter_add, scatter_mean
from torch_geometric.nn import MessagePassing, HeteroConv
# GVP model from ICLR 2021 paper: Learning from Protein Structure with Geometric Vector Perceptrons, https://openreview.net/forum?id=1YLJDvSx6J4
class MQAModel(nn.Module):
'''
GVP-GNN for Model Quality Assessment as described in manuscript.
Takes in protein structure graphs of type `torch_geometric.data.Data`
or `torch_geometric.data.Batch` and returns a scalar score for
each graph in the batch in a `torch.Tensor` of shape [n_nodes]
Should be used with `gvp.data.ProteinGraphDataset`, or with generators
of `torch_geometric.data.Batch` objects with the same attributes.
:param node_in_dim: node dimensions in input graph, should be
(6, 3) if using original features
:param node_h_dim: node dimensions to use in GVP-GNN layers
:param edge_in_dim: edge dimensions in input graph, should be
(32, 1) if using original features
:param edge_h_dim: edge dimensions to embed to before use
in GVP-GNN layers
:seq_in: if `True`, sequences will also be passed in with
the forward pass; otherwise, sequence information
is assumed to be part of input node embeddings
:param num_layers: number of GVP-GNN layers
:param drop_rate: rate to use in all dropout layers
'''
def __init__(self, node_in_dim, node_h_dim,
edge_in_dim, edge_h_dim, metadata,
num_layers=3, drop_rate=0.1):
super(MQAModel, self).__init__()
self.node_type = metadata[0]
self.edge_type = metadata[1]
self.W_v = nn.ModuleDict({
node_type: nn.Sequential(
LayerNorm(node_in_dim),
GVP(node_in_dim, node_h_dim, activations=(None, None))
) for node_type in self.node_type
})
self.W_e = nn.ModuleDict(
{edge_type[1]: nn.Sequential(
LayerNorm(edge_in_dim),
GVP(edge_in_dim, edge_h_dim, activations=(None, None))
) for edge_type in self.edge_type}
)
self.layers = nn.ModuleDict(
{
edge_type[1]: MySequential(*[GVPConvLayer(node_h_dim, edge_h_dim, drop_rate=drop_rate) for _ in range(num_layers)])
for edge_type in self.edge_type
}
)
ns, _ = node_h_dim
self.W_out = nn.Sequential(
LayerNorm(node_h_dim),
GVP(node_h_dim, (ns, 0)))
self.dense = nn.Sequential(
nn.Linear(ns, 2*ns), nn.ReLU(inplace=True),
nn.Dropout(p=drop_rate),
nn.Linear(2*ns, 1)
)
def forward(self, h_V_dict, edge_index_dict, h_E_dict, batch=None):
'''
:param h_V: tuple (s, V) of node embeddings
:param edge_index: `torch.Tensor` of shape [2, num_edges]
:param h_E: tuple (s, V) of edge embeddings
:param seq: if not `None`, int `torch.Tensor` of shape [num_nodes]
to be embedded and appended to `h_V`
'''
h_V = {'residue': self.W_v['residue']((h_V_dict[0]['residue'], h_V_dict[1]['residue']))}
h_E = {edge_type: self.W_e[edge_type[1]]((h_E_dict[0][edge_type], h_E_dict[1][edge_type])) for edge_type in self.edge_type}
h_out = None
for edge_type in self.edge_type:
node = h_V['residue']
edge_index = edge_index_dict[edge_type]
edge_attr = h_E[edge_type]
h_conv = self.layers[edge_type[1]](node, edge_index, edge_attr)
if h_out is None:
h_out = h_conv
else:
h_out = tuple_sum(h_out, h_conv)
out = self.W_out(h_out)
if batch is None: out = out.mean(dim=0, keepdims=True)
else: out = scatter_mean(out, batch, dim=0)
out = self.dense(out).squeeze(-1) + 0.5
# add an extra sigmoid for BCE loss
return nn.functional.sigmoid(out)
class LayerNorm(nn.Module):
'''
Combined LayerNorm for tuples (s, V).
Takes tuples (s, V) as input and as output.
'''
def __init__(self, dims):
super(LayerNorm, self).__init__()
self.s, self.v = dims
self.scalar_norm = nn.LayerNorm(self.s)
def forward(self, x):
'''
:param x: tuple (s, V) of `torch.Tensor`,
or single `torch.Tensor`
(will be assumed to be scalar channels)
'''
if not self.v:
return self.scalar_norm(x)
s, v = x
vn = _norm_no_nan(v, axis=-1, keepdims=True, sqrt=False)
vn = torch.sqrt(torch.mean(vn, dim=-2, keepdim=True))
return self.scalar_norm(s), v / vn
class GVPConv(MessagePassing):
'''
Graph convolution / message passing with Geometric Vector Perceptrons.
Takes in a graph with node and edge embeddings,
and returns new node embeddings.
This does NOT do residual updates and pointwise feedforward layers
---see `GVPConvLayer`.
:param in_dims: input node embedding dimensions (n_scalar, n_vector)
:param out_dims: output node embedding dimensions (n_scalar, n_vector)
:param edge_dims: input edge embedding dimensions (n_scalar, n_vector)
:param n_layers: number of GVPs in the message function
:param module_list: preconstructed message function, overrides n_layers
:param aggr: should be "add" if some incoming edges are masked, as in
a masked autoregressive decoder architecture, otherwise "mean"
:param activations: tuple of functions (scalar_act, vector_act) to use in GVPs
:param vector_gate: whether to use vector gating.
(vector_act will be used as sigma^+ in vector gating if `True`)
'''
def __init__(self, in_dims, out_dims, edge_dims,
n_layers=3, module_list=None, aggr="mean",
activations=(F.relu, torch.sigmoid), vector_gate=False):
super(GVPConv, self).__init__(aggr=aggr)
self.si, self.vi = in_dims
self.so, self.vo = out_dims
self.se, self.ve = edge_dims
GVP_ = functools.partial(GVP,
activations=activations, vector_gate=vector_gate)
module_list = module_list or []
if not module_list:
if n_layers == 1:
module_list.append(
GVP_((2*self.si + self.se, 2*self.vi + self.ve),
(self.so, self.vo), activations=(None, None)))
else:
module_list.append(
GVP_((2*self.si + self.se, 2*self.vi + self.ve), out_dims)
)
for i in range(n_layers - 2):
module_list.append(GVP_(out_dims, out_dims))
module_list.append(GVP_(out_dims, out_dims,
activations=(None, None)))
self.message_func = nn.Sequential(*module_list)
def forward(self, x, edge_index, edge_attr):
'''
:param x: tuple (s, V) of `torch.Tensor`
:param edge_index: array of shape [2, n_edges]
:param edge_attr: tuple (s, V) of `torch.Tensor`
'''
x_s, x_v = x
message = self.propagate(edge_index,
s=x_s, v=x_v.reshape(x_v.shape[0], 3*x_v.shape[1]),
edge_attr=edge_attr)
return _split(message, self.vo)
def message(self, s_i, v_i, s_j, v_j, edge_attr):
v_j = v_j.view(v_j.shape[0], v_j.shape[1]//3, 3)
v_i = v_i.view(v_i.shape[0], v_i.shape[1]//3, 3)
message = tuple_cat((s_j, v_j), edge_attr, (s_i, v_i))
message = self.message_func(message)
return _merge(*message)
class GVPConvLayer(nn.Module):
'''
Full graph convolution / message passing layer with
Geometric Vector Perceptrons. Residually updates node embeddings with
aggregated incoming messages, applies a pointwise feedforward
network to node embeddings, and returns updated node embeddings.
To only compute the aggregated messages, see `GVPConv`.
:param node_dims: node embedding dimensions (n_scalar, n_vector)
:param edge_dims: input edge embedding dimensions (n_scalar, n_vector)
:param n_message: number of GVPs to use in message function
:param n_feedforward: number of GVPs to use in feedforward function
:param drop_rate: drop probability in all dropout layers
:param autoregressive: if `True`, this `GVPConvLayer` will be used
with a different set of input node embeddings for messages
where src >= dst
:param activations: tuple of functions (scalar_act, vector_act) to use in GVPs
:param vector_gate: whether to use vector gating.
(vector_act will be used as sigma^+ in vector gating if `True`)
'''
def __init__(self, node_dims, edge_dims,
n_message=3, n_feedforward=2, drop_rate=.1,
autoregressive=False,
activations=(F.relu, torch.sigmoid), vector_gate=False):
super(GVPConvLayer, self).__init__()
self.conv = GVPConv(node_dims, node_dims, edge_dims, n_message,
aggr="add" if autoregressive else "mean",
activations=activations, vector_gate=vector_gate)
GVP_ = functools.partial(GVP,
activations=activations, vector_gate=vector_gate) # pre-set the act and vector_gate
self.norm = nn.ModuleList([LayerNorm(node_dims) for _ in range(2)])
self.dropout = nn.ModuleList([Dropout(drop_rate) for _ in range(2)])
ff_func = []
if n_feedforward == 1:
ff_func.append(GVP_(node_dims, node_dims, activations=(None, None)))
else:
hid_dims = 4*node_dims[0], 2*node_dims[1]
ff_func.append(GVP_(node_dims, hid_dims))
for i in range(n_feedforward-2):
ff_func.append(GVP_(hid_dims, hid_dims))
ff_func.append(GVP_(hid_dims, node_dims, activations=(None, None)))
self.ff_func = nn.Sequential(*ff_func)
def forward(self, x, edge_index, edge_attr,
autoregressive_x=None, node_mask=None):
'''
:param x: tuple (s, V) of `torch.Tensor`
:param edge_index: array of shape [2, n_edges]
:param edge_attr: tuple (s, V) of `torch.Tensor`
:param autoregressive_x: tuple (s, V) of `torch.Tensor`.
If not `None`, will be used as src node embeddings
for forming messages where src >= dst. The corrent node
embeddings `x` will still be the base of the update and the
pointwise feedforward.
:param node_mask: array of type `bool` to index into the first
dim of node embeddings (s, V). If not `None`, only
these nodes will be updated.
'''
if autoregressive_x is not None:
src, dst = edge_index
mask = src < dst
edge_index_forward = edge_index[:, mask]
edge_index_backward = edge_index[:, ~mask]
edge_attr_forward = tuple_index(edge_attr, mask)
edge_attr_backward = tuple_index(edge_attr, ~mask)
dh = tuple_sum(
self.conv(x, edge_index_forward, edge_attr_forward),
self.conv(autoregressive_x, edge_index_backward, edge_attr_backward)
)
count = scatter_add(torch.ones_like(dst), dst,
dim_size=dh[0].size(0)).clamp(min=1).unsqueeze(-1)
dh = dh[0] / count, dh[1] / count.unsqueeze(-1)
else:
dh = self.conv(x, edge_index, edge_attr)
if node_mask is not None:
x_ = x
x, dh = tuple_index(x, node_mask), tuple_index(dh, node_mask)
x = self.norm[0](tuple_sum(x, self.dropout[0](dh)))
dh = self.ff_func(x)
x = self.norm[1](tuple_sum(x, self.dropout[1](dh)))
if node_mask is not None:
x_[0][node_mask], x_[1][node_mask] = x[0], x[1]
x = x_
return x
def tuple_sum(*args):
'''
Sums any number of tuples (s, V) elementwise.
'''
return tuple(map(sum, zip(*args)))
def tuple_cat(*args, dim=-1):
'''
Concatenates any number of tuples (s, V) elementwise.
:param dim: dimension along which to concatenate when viewed
as the `dim` index for the scalar-channel tensors.
This means that `dim=-1` will be applied as
`dim=-2` for the vector-channel tensors.
'''
dim %= len(args[0][0].shape)
s_args, v_args = list(zip(*args))
return torch.cat(s_args, dim=dim), torch.cat(v_args, dim=dim)
def tuple_index(x, idx):
'''
Indexes into a tuple (s, V) along the first dimension.
:param idx: any object which can be used to index into a `torch.Tensor`
'''
return x[0][idx], x[1][idx]
def randn(n, dims, device="cpu"):
'''
Returns random tuples (s, V) drawn elementwise from a normal distribution.
:param n: number of data points
:param dims: tuple of dimensions (n_scalar, n_vector)
:return: (s, V) with s.shape = (n, n_scalar) and
V.shape = (n, n_vector, 3)
'''
return torch.randn(n, dims[0], device=device), \
torch.randn(n, dims[1], 3, device=device)
def _norm_no_nan(x, axis=-1, keepdims=False, eps=1e-8, sqrt=True):
'''
L2 norm of tensor clamped above a minimum value `eps`.
:param sqrt: if `False`, returns the square of the L2 norm
'''
out = torch.clamp(torch.sum(torch.square(x), axis, keepdims), min=eps)
return torch.sqrt(out) if sqrt else out
def _split(x, nv):
'''
Splits a merged representation of (s, V) back into a tuple.
Should be used only with `_merge(s, V)` and only if the tuple
representation cannot be used.
:param x: the `torch.Tensor` returned from `_merge`
:param nv: the number of vector channels in the input to `_merge`
'''
v = torch.reshape(x[..., -3*nv:], x.shape[:-1] + (nv, 3))
s = x[..., :-3*nv]
return s, v
def _merge(s, v):
'''
Merges a tuple (s, V) into a single `torch.Tensor`, where the
vector channels are flattened and appended to the scalar channels.
Should be used only if the tuple representation cannot be used.
Use `_split(x, nv)` to reverse.
'''
v = torch.reshape(v, v.shape[:-2] + (3*v.shape[-2],))
return torch.cat([s, v], -1)
class GVP(nn.Module):
'''
Geometric Vector Perceptron. See manuscript and README.md
for more details.
:param in_dims: tuple (n_scalar, n_vector)
:param out_dims: tuple (n_scalar, n_vector)
:param h_dim: intermediate number of vector channels, optional
:param activations: tuple of functions (scalar_act, vector_act)
:param vector_gate: whether to use vector gating.
(vector_act will be used as sigma^+ in vector gating if `True`)
'''
def __init__(self, in_dims, out_dims, h_dim=None,
activations=(F.relu, torch.sigmoid), vector_gate=False):
super(GVP, self).__init__()
self.si, self.vi = in_dims
self.so, self.vo = out_dims
self.vector_gate = vector_gate
if self.vi:
self.h_dim = h_dim or max(self.vi, self.vo)
self.wh = nn.Linear(self.vi, self.h_dim, bias=False)
self.ws = nn.Linear(self.h_dim + self.si, self.so)
if self.vo:
self.wv = nn.Linear(self.h_dim, self.vo, bias=False)
if self.vector_gate: self.wsv = nn.Linear(self.so, self.vo)
else:
self.ws = nn.Linear(self.si, self.so)
self.scalar_act, self.vector_act = activations
self.dummy_param = nn.Parameter(torch.empty(0))
def forward(self, x):
'''
:param x: tuple (s, V) of `torch.Tensor`,
or (if vectors_in is 0), a single `torch.Tensor`
:return: tuple (s, V) of `torch.Tensor`,
or (if vectors_out is 0), a single `torch.Tensor`
'''
if self.vi:
s, v = x
v = torch.transpose(v, -1, -2)
vh = self.wh(v)
vn = _norm_no_nan(vh, axis=-2)
s = self.ws(torch.cat([s, vn], -1))
if self.vo:
v = self.wv(vh)
v = torch.transpose(v, -1, -2)
if self.vector_gate:
if self.vector_act:
gate = self.wsv(self.vector_act(s))
else:
gate = self.wsv(s)
v = v * torch.sigmoid(gate).unsqueeze(-1)
elif self.vector_act:
v = v * self.vector_act(
_norm_no_nan(v, axis=-1, keepdims=True))
else:
s = self.ws(x)
if self.vo:
v = torch.zeros(s.shape[0], self.vo, 3,
device=self.dummy_param.device)
if self.scalar_act:
s = self.scalar_act(s)
return (s, v) if self.vo else s
class _VDropout(nn.Module):
'''
Vector channel dropout where the elements of each
vector channel are dropped together.
'''
def __init__(self, drop_rate):
super(_VDropout, self).__init__()
self.drop_rate = drop_rate
self.dummy_param = nn.Parameter(torch.empty(0))
def forward(self, x):
'''
:param x: `torch.Tensor` corresponding to vector channels
'''
device = self.dummy_param.device
if not self.training:
return x
mask = torch.bernoulli(
(1 - self.drop_rate) * torch.ones(x.shape[:-1], device=device)
).unsqueeze(-1)
x = mask * x / (1 - self.drop_rate)
return x
class Dropout(nn.Module):
'''
Combined dropout for tuples (s, V).
Takes tuples (s, V) as input and as output.
'''
def __init__(self, drop_rate):
super(Dropout, self).__init__()
self.sdropout = nn.Dropout(drop_rate)
self.vdropout = _VDropout(drop_rate)
def forward(self, x):
'''
:param x: tuple (s, V) of `torch.Tensor`,
or single `torch.Tensor`
(will be assumed to be scalar channels)
'''
if type(x) is torch.Tensor:
return self.sdropout(x)
s, v = x
return self.sdropout(s), self.vdropout(v)
class MySequential(nn.Module):
"""A custom sequential container that handles multiple inputs."""
def __init__(self, *args):
super(MySequential, self).__init__()
self.layers = nn.ModuleList(args)
def forward(self, x, edge_index, edge_attr):
for layer in self.layers:
x = layer(x, edge_index, edge_attr)
return x