-
Notifications
You must be signed in to change notification settings - Fork 0
/
run_squad_spanbert.py
774 lines (653 loc) · 29 KB
/
run_squad_spanbert.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
""" Finetuning the library models for question-answering on SQuAD (DistilBERT, Bert, XLM, XLNet)."""
import pickle
import argparse
import glob
import logging
logger = logging.getLogger(__name__)
import os
import random
import timeit
import numpy as np
import torch
from torch.utils.data import DataLoader, RandomSampler, SequentialSampler
from torch.utils.data.distributed import DistributedSampler
from tqdm import tqdm, trange
from model import Model
import transformers
from transformers import (
MODEL_FOR_QUESTION_ANSWERING_MAPPING,
WEIGHTS_NAME,
AdamW,
AutoConfig,
AutoModelForQuestionAnswering,
AutoTokenizer,
get_linear_schedule_with_warmup,
squad_convert_examples_to_features,
)
from transformers.data.metrics.squad_metrics import (
compute_predictions_log_probs,
compute_predictions_logits,
squad_evaluate,
)
from modify_squad import *
from transformers.trainer_utils import is_main_process
import torch.nn as nn
cross_entropy_loss = nn.CrossEntropyLoss(reduction='mean')
bce_loss = nn.BCEWithLogitsLoss(reduction='mean')
try:
from torch.utils.tensorboard import SummaryWriter
except ImportError:
from tensorboardX import SummaryWriter
MODEL_CONFIG_CLASSES = list(MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys())
MODEL_TYPES = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)
def set_seed(args):
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
if args.n_gpu > 0:
torch.cuda.manual_seed_all(args.seed)
def to_list(tensor):
return tensor.detach().cpu().tolist()
def iniGraphEmbedding(outputs):
return sentEmbed, uniqueSubWordEmbed
def generate_graph_embedding(origins, graphWord2Word , graphWord2Sent, graphSent2Sent):
hidden_states = outputs
return hidden_states
def combineRobertaVsGraph(origins, graph_embed):
return hidden_states
# [list_triple_graph , list_map] = pickle.load(open('triple_graph.sav','rb'))
import time
def train(args, features , train_dataset, list_sent_id, model, tokenizer):
"""Train the model"""
if args.local_rank in [-1, 0]:
tb_writer = SummaryWriter()
# print('list sent id ' , list_sent_id)
# print('train dataset ', train_dataset , len(train_dataset))
args.train_batch_size = args.per_gpu_train_batch_size * max(1, args.n_gpu)
train_sampler = RandomSampler(train_dataset) if args.local_rank == -1 else DistributedSampler(train_dataset)
train_dataloader = DataLoader(train_dataset, sampler=train_sampler, batch_size=args.train_batch_size)
if args.max_steps > 0:
t_total = args.max_steps
args.num_train_epochs = args.max_steps // (len(train_dataloader) // args.gradient_accumulation_steps) + 1
else:
t_total = len(train_dataloader) // args.gradient_accumulation_steps * args.num_train_epochs
optimizer = torch.optim.Adam(filter(lambda p: p.requires_grad, model.parameters() ), lr=args.learning_rate)
scheduler = get_linear_schedule_with_warmup(
optimizer, num_warmup_steps=args.warmup_steps, num_training_steps=t_total
)
# Check if saved optimizer or scheduler states exist
if os.path.isfile(os.path.join(args.model_name_or_path, "optimizer.pt")) and os.path.isfile(
os.path.join(args.model_name_or_path, "scheduler.pt")
):
# Load in optimizer and scheduler states
optimizer.load_state_dict(torch.load(os.path.join(args.model_name_or_path, "optimizer.pt")))
scheduler.load_state_dict(torch.load(os.path.join(args.model_name_or_path, "scheduler.pt")))
# multi-gpu training (should be after apex fp16 initialization)
if args.n_gpu > 1:
model = torch.nn.DataParallel(model)
# Distributed training (should be after apex fp16 initialization)
if args.local_rank != -1:
model = torch.nn.parallel.DistributedDataParallel(
model, device_ids=[args.local_rank], output_device=args.local_rank, find_unused_parameters=True
)
# Train!
logger.info("***** Running training *****")
logger.info(" Num examples = %d", len(train_dataset))
logger.info(" Num Epochs = %d", args.num_train_epochs)
logger.info(" Instantaneous batch size per GPU = %d", args.per_gpu_train_batch_size)
logger.info(
" Total train batch size (w. parallel, distributed & accumulation) = %d",
args.train_batch_size
* args.gradient_accumulation_steps
* (torch.distributed.get_world_size() if args.local_rank != -1 else 1),
)
logger.info(" Gradient Accumulation steps = %d", args.gradient_accumulation_steps)
logger.info(" Total optimization steps = %d", t_total)
global_step = 1
epochs_trained = 0
steps_trained_in_current_epoch = 0
# Check if continuing training from a checkpoint
if os.path.exists(args.model_name_or_path):
try:
# set global_step to gobal_step of last saved checkpoint from model path
checkpoint_suffix = args.model_name_or_path.split("-")[-1].split("/")[0]
global_step = int(checkpoint_suffix)
epochs_trained = global_step // (len(train_dataloader) // args.gradient_accumulation_steps)
steps_trained_in_current_epoch = global_step % (len(train_dataloader) // args.gradient_accumulation_steps)
logger.info(" Continuing training from checkpoint, will skip to saved global_step")
logger.info(" Continuing training from epoch %d", epochs_trained)
logger.info(" Continuing training from global step %d", global_step)
logger.info(" Will skip the first %d steps in the first epoch", steps_trained_in_current_epoch)
except ValueError:
logger.info(" Starting fine-tuning.")
tr_loss, logging_loss = 0.0, 0.0
model.zero_grad()
train_iterator = trange(
epochs_trained, int(args.num_train_epochs), desc="Epoch", disable=args.local_rank not in [-1, 0]
)
# Added here for reproductibility
set_seed(args)
best_F1 = 0.0
best_result = 0.0
N_down_lr , count = 3, 0
min_lr = 1e-7 # The value of learning rate that model can be down to, if learning rate reach this value, it is not decreased more
#module is desinged to allow .. reduce learning rate in training process
decay_rate = 0.2
original_lr = args.learning_rate
decay_lr_epoch = original_lr / int(args.num_train_epochs)
for epoch in range(int(args.num_train_epochs)):
#for each epoch, recompute learing rate
args.learning_rate = original_lr - decay_lr_epoch * epoch
print('new learing rate ' , args.learning_rate )
optimizer = torch.optim.Adam(filter(lambda p: p.requires_grad, model.parameters() ), lr=args.learning_rate )
original_index = list(range(len(features)))
np.random.shuffle(original_index)
list_index_batch = [original_index[x:x+args.train_batch_size] for x in range(0, len(original_index), args.train_batch_size)]
for step, batch_index in enumerate(list_index_batch):
# Skip past any already trained steps if resuming training
if steps_trained_in_current_epoch > 0 :
steps_trained_in_current_epoch -= 1
continue
model.train()
start_logit , end_logit , sent_logit = model.forward( features, batch_index) #shape (bs , seq len , 2 ) (bs , 1)
all_start_positions = torch.tensor([features[t].start_position for t in batch_index], dtype=torch.long).to(args.device)
all_end_positions = torch.tensor([features[t].end_position for t in batch_index], dtype=torch.long).to(args.device)
all_is_impossible = torch.tensor([features[t].is_impossible for t in batch_index]).to(args.device)
loss_start = cross_entropy_loss(start_logit , all_start_positions)
loss_end = cross_entropy_loss(end_logit , all_end_positions)
sent_logit = torch.squeeze(sent_logit) #shape (bs)
try:
loss_sent = bce_loss(sent_logit , all_is_impossible.float())
loss = (loss_start + loss_end + loss_sent ) / 3
if step % 1000 == 0 :
print('learning rate ' , args.learning_rate , 'epoch ', epoch , ' step ', step , 'loss', loss )
if args.gradient_accumulation_steps > 1:
loss = loss / args.gradient_accumulation_steps
loss.backward()
tr_loss += loss.item()
if (step + 1) % args.gradient_accumulation_steps == 0:
if args.fp16:
torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer), args.max_grad_norm)
else:
torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm)
# print('update .')
optimizer.step()
scheduler.step()
model.zero_grad()
global_step += 1
# # Log metrics
if args.local_rank in [-1, 0] and args.logging_steps > 0 and global_step % args.logging_steps == 0:
# Only evaluate when single GPU otherwise metrics may not average well
if args.local_rank == -1 and args.evaluate_during_training:
results = evaluate(args, model, tokenizer)
current_f1 = results['f1']
if current_f1 > best_F1:
best_result = results
print('best f1 ', current_f1 , 'all result ', best_result )
best_F1 = current_f1
#save current best model
output_dir = os.path.join(args.output_dir, "checkpoint-{}".format(global_step))
torch.save(model.state_dict() , output_dir)
logger.info("Saving optimizer and scheduler states to %s", output_dir)
else:
#In case current F1 is not greater than best F1
count += 1
print('best f1 ', best_F1 , 'all result ', best_result )
for key, value in results.items():
tb_writer.add_scalar("eval_{}".format(key), value, global_step)
tb_writer.add_scalar("lr", scheduler.get_lr()[0], global_step)
tb_writer.add_scalar("loss", (tr_loss - logging_loss) / args.logging_steps, global_step)
logging_loss = tr_loss
except Exception as e :
print('exception is raised ' , e)
#print('error matching size between target and input with target size ' , all_is_impossible.size() , 'and input size ', sent_digit.size())
if args.max_steps > 0 and global_step > args.max_steps:
epoch_iterator.close()
break
if args.max_steps > 0 and global_step > args.max_steps:
train_iterator.close()
break
if args.local_rank in [-1, 0]:
tb_writer.close()
return global_step, tr_loss / global_step
def evaluate(args, model, tokenizer, prefix=""):
dataset, examples, features , list_sent_id= load_and_cache_examples(args, tokenizer, evaluate=True, output_examples=True)
#dataset, examples, features = dataset[:100], examples[:100], features[:100]
all_input_ids = torch.tensor([f.input_ids for f in features], dtype=torch.long)
all_feature_index = torch.arange(all_input_ids.size(0), dtype=torch.long)
list_sent_id = list_sent_id
if not os.path.exists(args.output_dir) and args.local_rank in [-1, 0]:
os.makedirs(args.output_dir)
args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu)
# multi-gpu evaluate
if args.n_gpu > 1 and not isinstance(model, torch.nn.DataParallel):
model = torch.nn.DataParallel(model)
# Eval!
logger.info("***** Running evaluation {} *****".format(prefix))
logger.info(" Num examples = %d", len(dataset))
logger.info(" Batch size = %d", args.eval_batch_size)
all_results = []
start_time = timeit.default_timer()
#this index depend on index of batch of graph
original_index = list(range(len(features)))
list_index_batch = [original_index[x:x+args.train_batch_size] for x in range(0, len(original_index), args.train_batch_size)]
for step, batch_index in enumerate(list_index_batch):
model.eval()
start_digit , end_digit , sent_logit = model.forward( features , batch_index) #shape (bs , seq len , 2)
# feature_indices = torch.arange(all_input_ids.size(0), dtype=torch.long)
feature_indices = [all_feature_index[t] for t in batch_index]
for i, feature_index in enumerate(feature_indices):
eval_feature = features[feature_index.item()]
unique_id = int(eval_feature.unique_id)
start_logits, end_logits = to_list(start_digit[i]) , to_list(end_digit[i])
# print('start logits ', type(start_logits))
result = SquadResult(unique_id, start_logits, end_logits)
all_results.append(result)
evalTime = timeit.default_timer() - start_time
print(" Evaluation done in total %f secs (%f sec per example)", evalTime, evalTime / len(dataset))
# Compute predictions
output_prediction_file = os.path.join(args.output_dir, "predictions_{}.json".format(prefix))
output_nbest_file = os.path.join(args.output_dir, "nbest_predictions_{}.json".format(prefix))
if args.version_2_with_negative:
output_null_log_odds_file = os.path.join(args.output_dir, "null_odds_{}.json".format(prefix))
else:
output_null_log_odds_file = None
# XLNet and XLM use a more complex post-processing procedure
predictions = compute_predictions_logits(
examples,
features,
all_results,
args.n_best_size,
args.max_answer_length,
args.do_lower_case,
output_prediction_file,
output_nbest_file,
output_null_log_odds_file,
args.verbose_logging,
args.version_2_with_negative,
args.null_score_diff_threshold,
tokenizer,
)
# Compute the F1 and exact scores.
results = squad_evaluate(examples, predictions)
print("Results: {}".format(results))
return results
def load_and_cache_examples(args, tokenizer, evaluate=False, output_examples=False):
print('evaluate status ' , evaluate , output_examples)
if args.local_rank not in [-1, 0] and not evaluate:
# Make sure only the first process in distributed training process the dataset, and the others will use the cache
torch.distributed.barrier()
# Load data features from cache or dataset file
input_dir = args.data_dir if args.data_dir else "."
cached_features_file = os.path.join(
input_dir,
"cached_{}_{}_{}".format(
"dev" if evaluate else "train",
list(filter(None, args.model_name_or_path.split("/"))).pop(),
str(args.max_seq_length),
),
)
# Init features and dataset from cache if it exists
if os.path.exists(cached_features_file) and not args.overwrite_cache:
logger.info("Loading features from cached file %s", cached_features_file)
features_and_dataset = torch.load(cached_features_file)
features, dataset, examples, list_sent_id = (
features_and_dataset["features"],
features_and_dataset["dataset"],
features_and_dataset["examples"],
features_and_dataset["list_sent_id"])
else:
logger.info("Creating features from dataset file at %s", input_dir)
if not args.data_dir and ((evaluate and not args.predict_file) or (not evaluate and not args.train_file)):
try:
import tensorflow_datasets as tfds
except ImportError:
raise ImportError("If not data_dir is specified, tensorflow_datasets needs to be installed.")
if args.version_2_with_negative:
logger.warning("tensorflow_datasets does not handle version 2 of SQuAD.")
tfds_examples = tfds.load("squad")
examples = SquadV1Processor().get_examples_from_dataset(tfds_examples, evaluate=evaluate)
else:
processor = SquadV2Processor() if args.version_2_with_negative else SquadV1Processor()
if evaluate:
examples = processor.get_dev_examples(args.data_dir, filename=args.predict_file)
else:
examples = processor.get_train_examples(args.data_dir, filename=args.train_file)
features, dataset , list_sent_id = squad_convert_examples_to_features(
examples=examples,
tokenizer=tokenizer,
max_seq_length=args.max_seq_length,
doc_stride=args.doc_stride,
max_query_length=args.max_query_length,
is_training=not evaluate,
return_dataset="pt",
threads=args.threads,
)
if args.local_rank in [-1, 0]:
logger.info("Saving features into cached file %s", cached_features_file)
torch.save({"features": features, "dataset": dataset, "examples": examples, 'list_sent_id':list_sent_id}, cached_features_file)
if args.local_rank == 0 and not evaluate:
# Make sure only the first process in distributed training process the dataset, and the others will use the cache
torch.distributed.barrier()
if output_examples:
return dataset, examples, features , list_sent_id
# return dataset , list_sent_id
return features, dataset , list_sent_id
def main():
parser = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--model_type",
default=None,
type=str,
required=True,
help="Model type selected in the list: " + ", ".join(MODEL_TYPES),
)
parser.add_argument(
"--model_name_or_path",
default=None,
type=str,
required=True,
help="Path to pretrained model or model identifier from huggingface.co/models",
)
parser.add_argument(
"--output_dir",
default=None,
type=str,
required=True,
help="The output directory where the model checkpoints and predictions will be written.",
)
# Other parameters
parser.add_argument(
"--data_dir",
default=None,
type=str,
help="The input data dir. Should contain the .json files for the task."
+ "If no data dir or train/predict files are specified, will run with tensorflow_datasets.",
)
parser.add_argument(
"--train_file",
default=None,
type=str,
help="The input training file. If a data dir is specified, will look for the file there"
+ "If no data dir or train/predict files are specified, will run with tensorflow_datasets.",
)
parser.add_argument(
"--predict_file",
default=None,
type=str,
help="The input evaluation file. If a data dir is specified, will look for the file there"
+ "If no data dir or train/predict files are specified, will run with tensorflow_datasets.",
)
parser.add_argument(
"--config_name", default="", type=str,
help="Pretrained config name or path if not the same as model_name"
)
parser.add_argument(
"--tokenizer_name",
default="",
type=str,
help="Pretrained tokenizer name or path if not the same as model_name",
)
parser.add_argument(
"--cache_dir",
default="",
type=str,
help="Where do you want to store the pre-trained models downloaded from huggingface.co",
)
parser.add_argument(
"--version_2_with_negative",
action="store_true",
help="If true, the SQuAD examples contain some that do not have an answer.",
)
parser.add_argument(
"--null_score_diff_threshold",
type=float,
default=0.0,
help="If null_score - best_non_null is greater than the threshold predict null.",
)
parser.add_argument(
"--max_seq_length",
default=384,
type=int,
help="The maximum total input sequence length after WordPiece tokenization. Sequences "
"longer than this will be truncated, and sequences shorter than this will be padded.",
)
parser.add_argument(
"--doc_stride",
default=128,
type=int,
help="When splitting up a long document into chunks, how much stride to take between chunks.",
)
parser.add_argument(
"--max_query_length",
default=64,
type=int,
help="The maximum number of tokens for the question. Questions longer than this will "
"be truncated to this length.",
)
parser.add_argument("--do_train", action="store_true", help="Whether to run training.")
parser.add_argument("--do_eval", action="store_true", help="Whether to run eval on the dev set.")
parser.add_argument(
"--evaluate_during_training", action="store_true", help="Run evaluation during training at each logging step."
)
parser.add_argument(
"--do_lower_case", action="store_true", help="Set this flag if you are using an uncased model."
)
parser.add_argument("--per_gpu_train_batch_size", default=8, type=int, help="Batch size per GPU/CPU for training.")
parser.add_argument(
"--per_gpu_eval_batch_size", default=8, type=int, help="Batch size per GPU/CPU for evaluation."
)
parser.add_argument("--learning_rate", default=5e-5, type=float, help="The initial learning rate for Adam.")
parser.add_argument(
"--gradient_accumulation_steps",
type=int,
default=1,
help="Number of updates steps to accumulate before performing a backward/update pass.",
)
parser.add_argument("--weight_decay", default=0.0, type=float, help="Weight decay if we apply some.")
parser.add_argument("--adam_epsilon", default=1e-8, type=float, help="Epsilon for Adam optimizer.")
parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.")
parser.add_argument(
"--num_train_epochs", default=3.0, type=float, help="Total number of training epochs to perform."
)
parser.add_argument(
"--max_steps",
default=-1,
type=int,
help="If > 0: set total number of training steps to perform. Override num_train_epochs.",
)
parser.add_argument("--warmup_steps", default=0, type=int, help="Linear warmup over warmup_steps.")
parser.add_argument(
"--n_best_size",
default=20,
type=int,
help="The total number of n-best predictions to generate in the nbest_predictions.json output file.",
)
parser.add_argument(
"--max_answer_length",
default=30,
type=int,
help="The maximum length of an answer that can be generated. This is needed because the start "
"and end predictions are not conditioned on one another.",
)
parser.add_argument(
"--verbose_logging",
action="store_true",
help="If true, all of the warnings related to data processing will be printed. "
"A number of warnings are expected for a normal SQuAD evaluation.",
)
parser.add_argument(
"--lang_id",
default=0,
type=int,
help="language id of input for language-specific xlm models (see tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)",
)
parser.add_argument("--logging_steps", type=int, default=500, help="Log every X updates steps.")
parser.add_argument("--save_steps", type=int, default=500, help="Save checkpoint every X updates steps.")
parser.add_argument(
"--eval_all_checkpoints",
action="store_true",
help="Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number",
)
parser.add_argument("--no_cuda", action="store_true", help="Whether not to use CUDA when available")
parser.add_argument(
"--overwrite_output_dir", action="store_true", help="Overwrite the content of the output directory"
)
parser.add_argument(
"--overwrite_cache", action="store_true", help="Overwrite the cached training and evaluation sets"
)
parser.add_argument("--seed", type=int, default=42, help="random seed for initialization")
parser.add_argument("--local_rank", type=int, default=-1, help="local_rank for distributed training on gpus")
parser.add_argument(
"--fp16",
action="store_true",
help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit",
)
parser.add_argument(
"--fp16_opt_level",
type=str,
default="O1",
help="For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']."
"See details at https://nvidia.github.io/apex/amp.html",
)
parser.add_argument("--server_ip", type=str, default="", help="Can be used for distant debugging.")
parser.add_argument("--server_port", type=str, default="", help="Can be used for distant debugging.")
parser.add_argument("--threads", type=int, default=1, help="multiple threads for converting example to features")
parser.add_argument("--niter_graph", type =int , default = 1 , help="how many iterations for carrying out iteratively updater for GNN")
parser.add_argument("--n_block", type =int , default = 1 , help="")
parser.add_argument("--word_dim", type =int , default = 1024 , help="word dim for hidden dim of pretrained model ")
parser.add_argument("--sent_dim", type =int , default = 64 , help="sent dim. This value can be varied to find best results")
args = parser.parse_args()
if args.doc_stride >= args.max_seq_length - args.max_query_length:
logger.warning(
"WARNING - You've set a doc stride which may be superior to the document length in some "
"examples. This could result in errors when building features from the examples. Please reduce the doc "
"stride or increase the maximum length to ensure the features are correctly built."
)
if (
os.path.exists(args.output_dir)
and os.listdir(args.output_dir)
and args.do_train
and not args.overwrite_output_dir
):
raise ValueError(
"Output directory ({}) already exists and is not empty. Use --overwrite_output_dir to overcome.".format(
args.output_dir
)
)
# Setup distant debugging if needed
if args.server_ip and args.server_port:
# Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
import ptvsd
print("Waiting for debugger attach")
ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True)
ptvsd.wait_for_attach()
# Setup CUDA, GPU & distributed training
if args.local_rank == -1 or args.no_cuda:
device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
args.n_gpu = 0 if args.no_cuda else torch.cuda.device_count()
else: # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
torch.cuda.set_device(args.local_rank)
device = torch.device("cuda", args.local_rank)
torch.distributed.init_process_group(backend="nccl")
args.n_gpu = 1
args.device = device
if is_main_process(args.local_rank):
transformers.utils.logging.set_verbosity_info()
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
# Set seed
set_seed(args)
# Load pretrained model and tokenizer
if args.local_rank not in [-1, 0]:
# Make sure only the first process in distributed training will download model & vocab
torch.distributed.barrier()
args.model_type = args.model_type.lower()
config = AutoConfig.from_pretrained(
args.config_name if args.config_name else args.model_name_or_path,
cache_dir=args.cache_dir if args.cache_dir else None,
)
autoQAmodel = AutoModelForQuestionAnswering.from_pretrained(
args.model_name_or_path,
from_tf=bool(".ckpt" in args.model_name_or_path),
config=config,
cache_dir=args.cache_dir if args.cache_dir else None,
)
tokenizer = AutoTokenizer.from_pretrained(
args.model_name_or_path,
do_lower_case=args.do_lower_case,
cache_dir=args.cache_dir if args.cache_dir else None,
use_fast=False, # SquadDataset is not compatible with Fast tokenizers which have a smarter overflow handeling
)
model_roberta = autoQAmodel.bert
if args.local_rank == 0:
# Make sure only the first process in distributed training will download model & vocab
torch.distributed.barrier()
if args.local_rank == 0:
# Make sure only the first process in distributed training will download model & vocab
torch.distributed.barrier()
model = Model(pretrained_model = model_roberta, word_emb_dim = args.word_dim, sent_emb_dim = args.sent_dim , n_block= args.n_block , device = args.device)
#model.load_state_dict(torch.load('checkpoint-14000'))
model.to(args.device)
print('model ' , model)
logger.info("Training/evaluation parameters %s", args)
if args.do_train:
features, train_dataset , list_sent_id = load_and_cache_examples(args, tokenizer, evaluate=False, output_examples=False)
global_step, tr_loss = train(args, features, train_dataset, list_sent_id, model, tokenizer)
logger.info(" global_step = %s, average loss = %s", global_step, tr_loss)
#tam thoi comment phan nay
#Save# the trained model and the tokenizer
if args.do_train and (args.local_rank == -1 or torch.distributed.get_rank() == 0):
logger.info("Saving model checkpoint to %s", args.output_dir)
# Save a trained model, configuration and tokenizer using `save_pretrained()`.
# They can then be reloaded using `from_pretrained()`
# Take care of distributed/parallel training
# model_to_save = model.module if hasattr(model, "module") else model
# model_to_save.save_pretrained(args.output_dir)
# tokenizer.save_pretrained(args.output_dir)
# # Good practice: save your training arguments together with the trained model
# torch.save(args, os.path.join(args.output_dir, "training_args.bin"))
# # Load a trained model and vocabulary that you have fine-tuned
# model = AutoModelForQuestionAnswering.from_pretrained(args.output_dir) # , force_download=True)
# # SquadDataset is not compatible with Fast tokenizers which have a smarter overflow handeling
# # So we use use_fast=False here for now until Fast-tokenizer-compatible-examples are out
# tokenizer = AutoTokenizer.from_pretrained(args.output_dir, do_lower_case=args.do_lower_case, use_fast=False)
torch.save(model.state_dict(), "model_draft")
model.to(args.device)
# Evaluation - we can ask to evaluate all the checkpoints (sub-directories) in a directory
results = {}
if args.do_eval and args.local_rank in [-1, 0]:
# if args.do_train:
# logger.info("Loading checkpoints saved during training for evaluation")
# checkpoints = [args.output_dir]
# if args.eval_all_checkpoints:
# checkpoints = list(
# os.path.dirname(c)
# for c in sorted(glob.glob(args.output_dir + "/**/" + WEIGHTS_NAME, recursive=True))
# )
# else:
# logger.info("Loading checkpoint %s for evaluation", args.model_name_or_path)
# checkpoints = [args.model_name_or_path]
# logger.info("Evaluate the following checkpoints: %s", checkpoints)
# for checkpoint in checkpoints:
# # Reload the model
# global_step = checkpoint.split("-")[-1] if len(checkpoints) > 1 else ""
# model = AutoModelForQuestionAnswering.from_pretrained(checkpoint) # , force_download=True)
# model.to(args.device)
# # Evaluate
# result = evaluate(args, model, tokenizer, prefix=global_step)
# result = dict((k + ("_{}".format(global_step) if global_step else ""), v) for k, v in result.items())
# # logger.info("Result: {}".format(result))
# results.update(result)
# Reload the model
model.load_state_dict(torch.load('model_draft'))
model.to(args.device)
# Evaluate
result = evaluate(args, model, tokenizer, prefix=global_step)
# result = dict((k + ("_{}".format(global_step) if global_step else ""), v) for k, v in result.items())
# logger.info("Result: {}".format(result))
logger.info("Result: {}".format(result))
return results
if __name__ == "__main__":
main()