forked from bhanML/Co-teaching
-
Notifications
You must be signed in to change notification settings - Fork 0
/
model.py
70 lines (62 loc) · 2.57 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
import math
import torch
import torch.nn as nn
import torch.nn.init as init
import torch.nn.functional as F
import torch.optim as optim
def call_bn(bn, x):
return bn(x)
class CNN(nn.Module):
def __init__(self, input_channel=3, n_outputs=10, dropout_rate=0.25, top_bn=False):
self.dropout_rate = dropout_rate
self.top_bn = top_bn
super(CNN, self).__init__()
self.c1=nn.Conv2d(input_channel,128,kernel_size=3,stride=1, padding=1)
self.c2=nn.Conv2d(128,128,kernel_size=3,stride=1, padding=1)
self.c3=nn.Conv2d(128,128,kernel_size=3,stride=1, padding=1)
self.c4=nn.Conv2d(128,256,kernel_size=3,stride=1, padding=1)
self.c5=nn.Conv2d(256,256,kernel_size=3,stride=1, padding=1)
self.c6=nn.Conv2d(256,256,kernel_size=3,stride=1, padding=1)
self.c7=nn.Conv2d(256,512,kernel_size=3,stride=1, padding=0)
self.c8=nn.Conv2d(512,256,kernel_size=3,stride=1, padding=0)
self.c9=nn.Conv2d(256,128,kernel_size=3,stride=1, padding=0)
self.l_c1=nn.Linear(128,n_outputs)
self.bn1=nn.BatchNorm2d(128)
self.bn2=nn.BatchNorm2d(128)
self.bn3=nn.BatchNorm2d(128)
self.bn4=nn.BatchNorm2d(256)
self.bn5=nn.BatchNorm2d(256)
self.bn6=nn.BatchNorm2d(256)
self.bn7=nn.BatchNorm2d(512)
self.bn8=nn.BatchNorm2d(256)
self.bn9=nn.BatchNorm2d(128)
def forward(self, x,):
h=x
h=self.c1(h)
h=F.leaky_relu(call_bn(self.bn1, h), negative_slope=0.01)
h=self.c2(h)
h=F.leaky_relu(call_bn(self.bn2, h), negative_slope=0.01)
h=self.c3(h)
h=F.leaky_relu(call_bn(self.bn3, h), negative_slope=0.01)
h=F.max_pool2d(h, kernel_size=2, stride=2)
h=F.dropout2d(h, p=self.dropout_rate)
h=self.c4(h)
h=F.leaky_relu(call_bn(self.bn4, h), negative_slope=0.01)
h=self.c5(h)
h=F.leaky_relu(call_bn(self.bn5, h), negative_slope=0.01)
h=self.c6(h)
h=F.leaky_relu(call_bn(self.bn6, h), negative_slope=0.01)
h=F.max_pool2d(h, kernel_size=2, stride=2)
h=F.dropout2d(h, p=self.dropout_rate)
h=self.c7(h)
h=F.leaky_relu(call_bn(self.bn7, h), negative_slope=0.01)
h=self.c8(h)
h=F.leaky_relu(call_bn(self.bn8, h), negative_slope=0.01)
h=self.c9(h)
h=F.leaky_relu(call_bn(self.bn9, h), negative_slope=0.01)
h=F.avg_pool2d(h, kernel_size=h.data.shape[2])
h = h.view(h.size(0), h.size(1))
logit=self.l_c1(h)
if self.top_bn:
logit=call_bn(self.bn_c1, logit)
return logit