-
Notifications
You must be signed in to change notification settings - Fork 106
/
Copy pathsgraph_from_neo4j_json.py
55 lines (45 loc) · 1.79 KB
/
sgraph_from_neo4j_json.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
import graphlab as gl
def extract_entities(sf, entities):
'''
Extract entities (nodes or edges) from graph data retrieved from a
JSON file created by Neo4j.
Args:
sf: The sf containing 'data' column extracted from a JSON file
created by Neo4j.
entities: The entities to extract from sf. Can be 'nodes' or
'relationships'.
Returns:
SFrame of given entities
'''
sf[entities] = sf['data'].apply(lambda data: data['graph'][entities])
entities_sf = sf[[entities]].stack(entities, new_column_name=entities)
entities_sf = entities_sf.unpack(entities, column_name_prefix='')
entities_sf = entities_sf.unpack('properties', column_name_prefix='')
return entities_sf
def get_sgraph_from_neo4j_json(json_filename):
'''
Reads a JSON file, created by Neo4j, into an SGraph.
Args:
json_filename: The name of the JSON file created by Neo4j.
Returns:
SGraph
'''
# Load json_filename into an SFrame
sf = gl.SFrame.read_csv(json_filename, header=False,
column_type_hints=dict, verbose=False)
# Extract the graph data from sf
sf = sf.unpack('X1', column_name_prefix='')
sf = sf[['data']].stack('data', new_column_name='data')
# Extract nodes and edges
nodes_sf = extract_entities(sf, 'nodes')
edges_sf = extract_entities(sf, 'relationships')
# Create the SGraph
sgraph = gl.SGraph()
sgraph = sgraph.add_edges(edges_sf, src_field='startNode',
dst_field='endNode')
sgraph = sgraph.add_vertices(nodes_sf, vid_field='id')
return sgraph
g = get_sgraph_from_neo4j_json(
'https://static.turi.com/datasets/how-to/movies.json')
print g
# SGraph({'num_edges': 20L, 'num_vertices': 12L})