-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmodels.py
140 lines (107 loc) · 3.79 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
import torch
import numpy as np
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
from utils import cosine_similarity
def compatibility(data, weights, cam):
'''
Computes x*W*A (compatibility function)
'''
projection = np.dot(np.dot(data, weights), cam)
return projection
class Base(nn.Module):
'''first try'''
def __init__(self, mlp, embed, proxies=None):
super(Base, self).__init__()
self.mlp = mlp
self.embed = embed
self.relu = nn.ReLU()
if proxies is None:
pass
else:
self.proxy_net = proxies
def forward(self, x):
x = self.mlp(x)
x = self.relu(x)
x = self.embed(x)
return x
class LinearProjection(nn.Module):
'''Linear projection'''
def __init__(self, n_in, n_out):
super(LinearProjection, self).__init__()
self.fc_embed = nn.Linear(n_in, n_out)
def forward(self, x):
x = self.fc_embed(x)
return x
class MLP(nn.Module):
def __init__(self, n_in, n_hidden, n_out):
''' MLP
Args:
n_in: number of input units
n_hidden: list of ints
number of units in hidden layers
n_out: number of output units
'''
super(MLP, self).__init__()
units = [n_in] + n_hidden + [n_out]
self.linear = nn.ModuleList([
nn.Linear(n_in, n_out)
for n_in, n_out in zip(units[:-1], units[1:])])
self.relu = nn.ReLU()
self.dropout = nn.Dropout()
self.n_layers = len(units) - 1
def forward(self, x):
for i in range(self.n_layers):
x = self.linear[i](x)
if i < (self.n_layers - 1):
x = self.relu(x)
x = self.dropout(x)
return x
def extract_layers(self, x):
out = []
for i in range(self.n_layers):
x = self.linear[i](x)
if i < (self.n_layers - 1):
x = self.relu(x)
x = self.dropout(x)
out.append(x)
return out
class ProxyNet(nn.Module):
"""ProxyNet"""
def __init__(self, n_classes, dim, proxies):
super(ProxyNet, self).__init__()
self.n_classes = n_classes
self.dim = dim
self.proxies = nn.Embedding(n_classes, dim,
scale_grad_by_freq=False)
self.proxies.weight = nn.Parameter(proxies, requires_grad=False)
def forward(self, y_true):
proxies_y_true = self.proxies(Variable(y_true))
return proxies_y_true
class ProxyLoss(nn.Module):
def __init__(self, temperature=1.):
super(ProxyLoss, self).__init__()
self.temperature = temperature
self.loss = nn.CrossEntropyLoss(reduction='none')
def forward(self, x, y, proxies):
# positive distances and negative distances
loss = self.softmax_embedding_loss(x, y, proxies)
all_loss = loss.mean()
preds = self.predict(x, proxies)
acc = (y == preds).type(torch.FloatTensor).mean()
return all_loss, acc
def softmax_embedding_loss(self, x, y, proxies):
idx = torch.from_numpy(np.arange(len(x), dtype=np.int)).cuda()
diff_iZ = cosine_similarity(x, proxies)
return self.loss(diff_iZ / self.temperature, y)
def classify(self, x, proxies):
idx = torch.from_numpy(np.arange(len(x), dtype=np.int)).cuda()
diff_iZ = cosine_similarity(x, proxies)
numerator_ip = torch.exp(diff_iZ[idx, :] / self.temperature)
denominator_ip = torch.exp(diff_iZ / self.temperature).sum(1) + 1e-8
probs = numerator_ip / denominator_ip[:, None]
return probs
def predict(self, x, proxies):
probs = self.classify(x, proxies)
return probs.max(1)[1].data