-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathswapping.py
79 lines (59 loc) · 2.31 KB
/
swapping.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
import os
import sys
import argparse
import numpy as np
import matplotlib.pylab as plt
from validate import calibrate
from sklearn import linear_model as lm
parser = argparse.ArgumentParser(description='PyTorch DML')
parser.add_argument('--att', type=str, required=True,
help='path to scores with attributes')
parser.add_argument('--sen', type=str, required=True,
help='path to scores without sentences')
args = parser.parse_args()
def L2norm(x):
return x / np.linalg.norm(x, axis=1)[:, None]
def get_probs(feat, proxies, temp=0.05):
diff = np.dot(L2norm(feat), L2norm(proxies).T)
num = np.exp(diff / temp)
den = num.sum(1) + 1e-8
return num / den[:, None]
def classify(data, proxies):
probs_seen = get_probs(data['feats_seen'], proxies)
probs_unseen = get_probs(data['feats_unseen'], proxies)
calibrate(probs_seen, probs_unseen,
data['y_seen'], data['y_unseen'],
data['seen_idx'])
def merge(emb_seen, emb_unseen, seen_idx):
n = len(emb_seen) + len(emb_unseen)
d = emb_seen.shape[1]
emb = np.zeros((n, d))
seen_idx_count = 0
unseen_idx_count = 0
for i in range(n):
if i in seen_idx:
emb[i, :] = emb_seen[seen_idx_count, :]
seen_idx_count += 1
else:
emb[i, :] = emb_unseen[unseen_idx_count, :]
unseen_idx_count += 1
return emb
def main():
data_att = np.load(args.att)
data_sen = np.load(args.sen)
print('\nTrain: attributes, Test: attributes')
classify(data_att, data_att['emb_full'])
print('\nTrain: sentences, Test: sentences')
classify(data_sen, data_sen['emb_full'])
model = lm.Ridge(alpha=0.1, normalize=True).fit(data_att['emb_seen'], data_sen['emb_seen'])
pred_unseen_emb = model.predict(data_att['emb_unseen'])
emb = merge(data_sen['emb_seen'], pred_unseen_emb, data_sen['seen_idx'])
print('\nTrain: sentences, Test: attributes')
classify(data_sen, emb)
model = lm.Ridge(alpha=0.1, normalize=True).fit(data_sen['emb_seen'], data_att['emb_seen'])
pred_unseen_emb = model.predict(data_sen['emb_unseen'])
emb = merge(data_att['emb_seen'], pred_unseen_emb, data_att['seen_idx'])
print('\nTrain: attributes, Test: sentences')
classify(data_att, emb)
if __name__ == '__main__':
main()