-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.log
4008 lines (3608 loc) · 252 KB
/
train.log
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
W1126 23:14:48.356578 30632 device_context.cc:447] Please NOTE: device: 0, GPU Compute Capability: 7.0, Driver API Version: 10.1, Runtime API Version: 10.1
W1126 23:14:48.361518 30632 device_context.cc:465] device: 0, cuDNN Version: 7.6.
Loading pretrained model from ../c3d.pdparams
cls_head.fc_cls.weight is not in pretrained model
cls_head.fc_cls.bias is not in pretrained model
There are 20/22 variables loaded into Recognizer3D.
/home/aistudio/paddle_c3d/datasets/pipelines/transforms.py:432: DeprecationWarning: `np.int` is a deprecated alias for the builtin `int`. To silence this warning, use `int` by itself. Doing this will not modify any behavior and is safe. When replacing `np.int`, you may wish to use e.g. `np.int64` or `np.int32` to specify the precision. If you wish to review your current use, check the release note link for additional information.
Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations
results['frame_inds'] = frame_inds.astype(np.int)
[TRAIN] epoch=1, batch_id=10, loss=4.791237, lr=0.000033,acc=0.003 ETA 12:08:23
[TRAIN] epoch=1, batch_id=20, loss=4.811666, lr=0.000067,acc=0.006 ETA 08:21:20
[TRAIN] epoch=1, batch_id=30, loss=4.790960, lr=0.000100,acc=0.006 ETA 08:04:30
[TRAIN] epoch=1, batch_id=40, loss=4.776621, lr=0.000133,acc=0.008 ETA 08:05:42
[TRAIN] epoch=1, batch_id=50, loss=4.765997, lr=0.000167,acc=0.006 ETA 07:58:49
[TRAIN] epoch=1, batch_id=60, loss=4.765493, lr=0.000200,acc=0.006 ETA 08:15:29
[TRAIN] epoch=1, batch_id=70, loss=4.756604, lr=0.000233,acc=0.008 ETA 08:12:09
[TRAIN] epoch=1, batch_id=80, loss=4.744222, lr=0.000267,acc=0.009 ETA 08:07:18
[TRAIN] epoch=1, batch_id=90, loss=4.735130, lr=0.000300,acc=0.010 ETA 08:16:59
[TRAIN] epoch=1, batch_id=100, loss=4.725593, lr=0.000333,acc=0.010 ETA 08:15:58
[TRAIN] epoch=1, batch_id=110, loss=4.724042, lr=0.000367,acc=0.010 ETA 08:28:37
[TRAIN] epoch=1, batch_id=120, loss=4.712107, lr=0.000400,acc=0.010 ETA 08:12:15
[TRAIN] epoch=1, batch_id=130, loss=4.701779, lr=0.000433,acc=0.011 ETA 09:16:16
[TRAIN] epoch=1, batch_id=140, loss=4.692621, lr=0.000467,acc=0.012 ETA 08:19:08
[TRAIN] epoch=1, batch_id=150, loss=4.682652, lr=0.000500,acc=0.014 ETA 08:23:37
[TRAIN] epoch=1, batch_id=160, loss=4.670393, lr=0.000533,acc=0.015 ETA 08:03:30
[TRAIN] epoch=1, batch_id=170, loss=4.658613, lr=0.000567,acc=0.017 ETA 08:22:51
[TRAIN] epoch=1, batch_id=180, loss=4.647335, lr=0.000600,acc=0.018 ETA 08:03:57
[TRAIN] epoch=1, batch_id=190, loss=4.635028, lr=0.000633,acc=0.020 ETA 08:17:57
[TRAIN] epoch=1, batch_id=200, loss=4.622623, lr=0.000667,acc=0.022 ETA 08:36:11
[TRAIN] epoch=1, batch_id=210, loss=4.609976, lr=0.000700,acc=0.024 ETA 09:25:32
[TRAIN] epoch=1, batch_id=220, loss=4.594133, lr=0.000733,acc=0.027 ETA 07:57:42
[TRAIN] epoch=1, batch_id=230, loss=4.576608, lr=0.000767,acc=0.030 ETA 08:08:10
[TRAIN] epoch=1, batch_id=240, loss=4.560827, lr=0.000800,acc=0.033 ETA 08:13:09
[TRAIN] epoch=1, batch_id=250, loss=4.539785, lr=0.000833,acc=0.037 ETA 08:17:50
[TRAIN] epoch=1, batch_id=260, loss=4.517671, lr=0.000867,acc=0.041 ETA 08:07:24
[TRAIN] epoch=1, batch_id=270, loss=4.494965, lr=0.000900,acc=0.045 ETA 08:34:48
[TRAIN] epoch=1, batch_id=280, loss=4.466347, lr=0.000933,acc=0.050 ETA 08:17:18
[TRAIN] epoch=1, batch_id=290, loss=4.440546, lr=0.000967,acc=0.055 ETA 08:08:48
/home/aistudio/paddle_c3d/datasets/pipelines/transforms.py:376: DeprecationWarning: `np.int` is a deprecated alias for the builtin `int`. To silence this warning, use `int` by itself. Doing this will not modify any behavior and is safe. When replacing `np.int`, you may wish to use e.g. `np.int64` or `np.int32` to specify the precision. If you wish to review your current use, check the release note link for additional information.
Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations
clip_offsets = (base_offsets + avg_interval / 2.0).astype(np.int)
[EVAL] epoch=1
Evaluating top_k_accuracy ...
top1_acc 0.3127
top5_acc 0.5490
Evaluating mean_class_accuracy ...
mean_acc 0.3055
Save best model
[TRAIN] epoch=2, batch_id=2, loss=3.734788, lr=0.001000,acc=0.188 ETA 123:55:46
[TRAIN] epoch=2, batch_id=12, loss=3.487500, lr=0.001000,acc=0.232 ETA 09:21:12
[TRAIN] epoch=2, batch_id=22, loss=3.409628, lr=0.001000,acc=0.256 ETA 09:07:10
[TRAIN] epoch=2, batch_id=32, loss=3.316549, lr=0.001000,acc=0.262 ETA 09:57:56
[TRAIN] epoch=2, batch_id=42, loss=3.181418, lr=0.001000,acc=0.290 ETA 10:17:45
[TRAIN] epoch=2, batch_id=52, loss=3.123313, lr=0.000999,acc=0.295 ETA 08:47:02
[TRAIN] epoch=2, batch_id=62, loss=3.081933, lr=0.000999,acc=0.298 ETA 08:07:29
[TRAIN] epoch=2, batch_id=72, loss=3.018050, lr=0.000999,acc=0.307 ETA 07:57:01
[TRAIN] epoch=2, batch_id=82, loss=2.935335, lr=0.000998,acc=0.317 ETA 08:20:32
[TRAIN] epoch=2, batch_id=92, loss=2.879711, lr=0.000998,acc=0.327 ETA 08:03:25
[TRAIN] epoch=2, batch_id=102, loss=2.832116, lr=0.000997,acc=0.333 ETA 07:56:46
[TRAIN] epoch=2, batch_id=112, loss=2.770930, lr=0.000997,acc=0.344 ETA 07:53:51
[TRAIN] epoch=2, batch_id=122, loss=2.718168, lr=0.000996,acc=0.357 ETA 10:15:25
[TRAIN] epoch=2, batch_id=132, loss=2.664087, lr=0.000995,acc=0.367 ETA 07:55:39
[TRAIN] epoch=2, batch_id=142, loss=2.624147, lr=0.000995,acc=0.373 ETA 08:27:56
[TRAIN] epoch=2, batch_id=152, loss=2.582077, lr=0.000994,acc=0.380 ETA 08:57:41
[TRAIN] epoch=2, batch_id=162, loss=2.542423, lr=0.000993,acc=0.387 ETA 08:03:17
[TRAIN] epoch=2, batch_id=172, loss=2.508694, lr=0.000992,acc=0.394 ETA 08:05:11
[TRAIN] epoch=2, batch_id=182, loss=2.475284, lr=0.000991,acc=0.401 ETA 08:07:07
[TRAIN] epoch=2, batch_id=192, loss=2.439874, lr=0.000990,acc=0.407 ETA 07:59:54
[TRAIN] epoch=2, batch_id=202, loss=2.407565, lr=0.000989,acc=0.412 ETA 08:03:53
[TRAIN] epoch=2, batch_id=212, loss=2.369697, lr=0.000988,acc=0.420 ETA 08:39:36
[TRAIN] epoch=2, batch_id=222, loss=2.335994, lr=0.000987,acc=0.426 ETA 08:06:10
[TRAIN] epoch=2, batch_id=232, loss=2.303747, lr=0.000985,acc=0.431 ETA 07:59:51
[TRAIN] epoch=2, batch_id=242, loss=2.272900, lr=0.000984,acc=0.437 ETA 07:59:17
[TRAIN] epoch=2, batch_id=252, loss=2.247078, lr=0.000983,acc=0.441 ETA 07:56:34
[TRAIN] epoch=2, batch_id=262, loss=2.215213, lr=0.000981,acc=0.447 ETA 07:54:45
[TRAIN] epoch=2, batch_id=272, loss=2.194565, lr=0.000980,acc=0.451 ETA 07:56:54
[TRAIN] epoch=2, batch_id=282, loss=2.166194, lr=0.000978,acc=0.456 ETA 08:22:26
[TRAIN] epoch=2, batch_id=292, loss=2.140809, lr=0.000977,acc=0.461 ETA 08:01:41
[EVAL] epoch=2
Evaluating top_k_accuracy ...
top1_acc 0.6564
top5_acc 0.8990
Evaluating mean_class_accuracy ...
mean_acc 0.6566
Save best model
[TRAIN] epoch=3, batch_id=4, loss=1.445334, lr=0.000975,acc=0.609 ETA 121:03:51
[TRAIN] epoch=3, batch_id=14, loss=1.292282, lr=0.000974,acc=0.661 ETA 08:27:07
[TRAIN] epoch=3, batch_id=24, loss=1.202732, lr=0.000972,acc=0.676 ETA 08:54:16
[TRAIN] epoch=3, batch_id=34, loss=1.235790, lr=0.000970,acc=0.656 ETA 10:05:49
[TRAIN] epoch=3, batch_id=44, loss=1.224124, lr=0.000968,acc=0.663 ETA 13:18:08
[TRAIN] epoch=3, batch_id=54, loss=1.254602, lr=0.000966,acc=0.657 ETA 11:26:00
[TRAIN] epoch=3, batch_id=64, loss=1.254296, lr=0.000964,acc=0.663 ETA 12:18:18
[TRAIN] epoch=3, batch_id=74, loss=1.236945, lr=0.000962,acc=0.660 ETA 09:57:58
[TRAIN] epoch=3, batch_id=84, loss=1.240300, lr=0.000960,acc=0.655 ETA 08:34:14
[TRAIN] epoch=3, batch_id=94, loss=1.228664, lr=0.000958,acc=0.657 ETA 08:05:21
[TRAIN] epoch=3, batch_id=104, loss=1.216440, lr=0.000956,acc=0.660 ETA 08:22:33
[TRAIN] epoch=3, batch_id=114, loss=1.202007, lr=0.000954,acc=0.665 ETA 08:03:40
[TRAIN] epoch=3, batch_id=124, loss=1.200702, lr=0.000952,acc=0.665 ETA 08:04:01
[TRAIN] epoch=3, batch_id=134, loss=1.193584, lr=0.000949,acc=0.668 ETA 07:59:28
[TRAIN] epoch=3, batch_id=144, loss=1.193210, lr=0.000947,acc=0.669 ETA 08:58:12
[TRAIN] epoch=3, batch_id=154, loss=1.189883, lr=0.000945,acc=0.671 ETA 09:10:06
[TRAIN] epoch=3, batch_id=164, loss=1.184111, lr=0.000942,acc=0.672 ETA 08:27:08
[TRAIN] epoch=3, batch_id=174, loss=1.180603, lr=0.000940,acc=0.672 ETA 09:22:36
[TRAIN] epoch=3, batch_id=184, loss=1.174168, lr=0.000937,acc=0.673 ETA 08:42:38
[TRAIN] epoch=3, batch_id=194, loss=1.165488, lr=0.000935,acc=0.675 ETA 09:06:07
[TRAIN] epoch=3, batch_id=204, loss=1.157009, lr=0.000932,acc=0.677 ETA 08:14:59
[TRAIN] epoch=3, batch_id=214, loss=1.155848, lr=0.000929,acc=0.677 ETA 08:15:13
[TRAIN] epoch=3, batch_id=224, loss=1.148713, lr=0.000927,acc=0.679 ETA 07:58:50
[TRAIN] epoch=3, batch_id=234, loss=1.148924, lr=0.000924,acc=0.680 ETA 07:59:45
[TRAIN] epoch=3, batch_id=244, loss=1.134637, lr=0.000921,acc=0.684 ETA 08:01:27
[TRAIN] epoch=3, batch_id=254, loss=1.128396, lr=0.000918,acc=0.685 ETA 08:07:51
[TRAIN] epoch=3, batch_id=264, loss=1.120293, lr=0.000915,acc=0.685 ETA 08:19:39
[TRAIN] epoch=3, batch_id=274, loss=1.116256, lr=0.000912,acc=0.687 ETA 08:12:39
[TRAIN] epoch=3, batch_id=284, loss=1.109380, lr=0.000909,acc=0.689 ETA 08:15:49
[TRAIN] epoch=3, batch_id=294, loss=1.104269, lr=0.000906,acc=0.690 ETA 08:10:48
[EVAL] epoch=3
Evaluating top_k_accuracy ...
top1_acc 0.7219
top5_acc 0.9270
Evaluating mean_class_accuracy ...
mean_acc 0.7236
Save best model
[TRAIN] epoch=4, batch_id=6, loss=0.886744, lr=0.000903,acc=0.734 ETA 117:33:23
[TRAIN] epoch=4, batch_id=16, loss=0.806944, lr=0.000900,acc=0.760 ETA 08:02:16
[TRAIN] epoch=4, batch_id=26, loss=0.755020, lr=0.000897,acc=0.775 ETA 08:12:32
[TRAIN] epoch=4, batch_id=36, loss=0.769667, lr=0.000894,acc=0.767 ETA 07:58:37
[TRAIN] epoch=4, batch_id=46, loss=0.765340, lr=0.000890,acc=0.774 ETA 07:56:41
[TRAIN] epoch=4, batch_id=56, loss=0.756646, lr=0.000887,acc=0.776 ETA 07:53:32
[TRAIN] epoch=4, batch_id=66, loss=0.757443, lr=0.000884,acc=0.774 ETA 07:48:23
[TRAIN] epoch=4, batch_id=76, loss=0.773645, lr=0.000880,acc=0.771 ETA 07:53:53
[TRAIN] epoch=4, batch_id=86, loss=0.775843, lr=0.000877,acc=0.770 ETA 07:46:12
[TRAIN] epoch=4, batch_id=96, loss=0.776113, lr=0.000873,acc=0.771 ETA 08:22:52
[TRAIN] epoch=4, batch_id=106, loss=0.772025, lr=0.000870,acc=0.771 ETA 07:57:39
[TRAIN] epoch=4, batch_id=116, loss=0.780451, lr=0.000866,acc=0.769 ETA 10:45:51
[TRAIN] epoch=4, batch_id=126, loss=0.782507, lr=0.000863,acc=0.768 ETA 16:32:45
[TRAIN] epoch=4, batch_id=136, loss=0.781408, lr=0.000859,acc=0.768 ETA 22:36:23
[TRAIN] epoch=4, batch_id=146, loss=0.774383, lr=0.000855,acc=0.770 ETA 08:23:50
[TRAIN] epoch=4, batch_id=156, loss=0.766319, lr=0.000852,acc=0.772 ETA 07:41:22
[TRAIN] epoch=4, batch_id=166, loss=0.773566, lr=0.000848,acc=0.769 ETA 08:58:29
[TRAIN] epoch=4, batch_id=176, loss=0.774077, lr=0.000844,acc=0.768 ETA 07:51:53
[TRAIN] epoch=4, batch_id=186, loss=0.766670, lr=0.000840,acc=0.770 ETA 10:43:06
[TRAIN] epoch=4, batch_id=196, loss=0.765275, lr=0.000836,acc=0.771 ETA 07:54:03
[TRAIN] epoch=4, batch_id=206, loss=0.760338, lr=0.000832,acc=0.773 ETA 09:37:17
[TRAIN] epoch=4, batch_id=216, loss=0.762304, lr=0.000829,acc=0.773 ETA 07:50:33
[TRAIN] epoch=4, batch_id=226, loss=0.760363, lr=0.000825,acc=0.774 ETA 11:05:42
[TRAIN] epoch=4, batch_id=236, loss=0.755649, lr=0.000820,acc=0.775 ETA 09:14:36
[TRAIN] epoch=4, batch_id=246, loss=0.751069, lr=0.000816,acc=0.777 ETA 08:35:27
[TRAIN] epoch=4, batch_id=256, loss=0.749761, lr=0.000812,acc=0.777 ETA 08:38:06
[TRAIN] epoch=4, batch_id=266, loss=0.746896, lr=0.000808,acc=0.778 ETA 07:50:22
[TRAIN] epoch=4, batch_id=276, loss=0.742315, lr=0.000804,acc=0.779 ETA 08:02:56
[TRAIN] epoch=4, batch_id=286, loss=0.738742, lr=0.000800,acc=0.780 ETA 07:50:15
[TRAIN] epoch=4, batch_id=296, loss=0.737706, lr=0.000796,acc=0.779 ETA 07:49:32
[EVAL] epoch=4
Evaluating top_k_accuracy ...
top1_acc 0.7417
top5_acc 0.9334
Evaluating mean_class_accuracy ...
mean_acc 0.7406
Save best model
[TRAIN] epoch=5, batch_id=8, loss=0.582154, lr=0.000791,acc=0.812 ETA 118:02:58
[TRAIN] epoch=5, batch_id=18, loss=0.631918, lr=0.000787,acc=0.793 ETA 08:08:35
[TRAIN] epoch=5, batch_id=28, loss=0.657649, lr=0.000783,acc=0.787 ETA 08:27:33
[TRAIN] epoch=5, batch_id=38, loss=0.641144, lr=0.000778,acc=0.799 ETA 08:56:29
[TRAIN] epoch=5, batch_id=48, loss=0.645664, lr=0.000774,acc=0.799 ETA 08:06:54
[TRAIN] epoch=5, batch_id=58, loss=0.648959, lr=0.000770,acc=0.799 ETA 11:58:29
[TRAIN] epoch=5, batch_id=68, loss=0.634153, lr=0.000765,acc=0.807 ETA 14:35:28
[TRAIN] epoch=5, batch_id=78, loss=0.627604, lr=0.000761,acc=0.807 ETA 12:12:02
[TRAIN] epoch=5, batch_id=88, loss=0.626540, lr=0.000756,acc=0.807 ETA 08:49:32
[TRAIN] epoch=5, batch_id=98, loss=0.621903, lr=0.000752,acc=0.809 ETA 07:39:28
[TRAIN] epoch=5, batch_id=108, loss=0.621579, lr=0.000747,acc=0.812 ETA 07:51:53
[TRAIN] epoch=5, batch_id=118, loss=0.624073, lr=0.000742,acc=0.812 ETA 07:41:38
[TRAIN] epoch=5, batch_id=128, loss=0.624468, lr=0.000738,acc=0.812 ETA 07:53:52
[TRAIN] epoch=5, batch_id=138, loss=0.622746, lr=0.000733,acc=0.811 ETA 07:43:14
[TRAIN] epoch=5, batch_id=148, loss=0.617212, lr=0.000728,acc=0.813 ETA 07:34:45
[TRAIN] epoch=5, batch_id=158, loss=0.611579, lr=0.000724,acc=0.815 ETA 07:42:24
[TRAIN] epoch=5, batch_id=168, loss=0.610227, lr=0.000719,acc=0.815 ETA 07:43:12
[TRAIN] epoch=5, batch_id=178, loss=0.605161, lr=0.000714,acc=0.817 ETA 08:23:39
[TRAIN] epoch=5, batch_id=188, loss=0.603904, lr=0.000709,acc=0.818 ETA 07:49:36
[TRAIN] epoch=5, batch_id=198, loss=0.602152, lr=0.000705,acc=0.818 ETA 10:12:15
[TRAIN] epoch=5, batch_id=208, loss=0.600705, lr=0.000700,acc=0.820 ETA 08:00:13
[TRAIN] epoch=5, batch_id=218, loss=0.600071, lr=0.000695,acc=0.821 ETA 08:00:22
[TRAIN] epoch=5, batch_id=228, loss=0.596345, lr=0.000690,acc=0.822 ETA 07:33:56
[TRAIN] epoch=5, batch_id=238, loss=0.595880, lr=0.000685,acc=0.821 ETA 08:04:52
[TRAIN] epoch=5, batch_id=248, loss=0.592635, lr=0.000680,acc=0.821 ETA 07:38:07
[TRAIN] epoch=5, batch_id=258, loss=0.590285, lr=0.000675,acc=0.822 ETA 07:42:09
[TRAIN] epoch=5, batch_id=268, loss=0.587840, lr=0.000670,acc=0.823 ETA 07:39:14
[TRAIN] epoch=5, batch_id=278, loss=0.585394, lr=0.000665,acc=0.824 ETA 07:47:21
[TRAIN] epoch=5, batch_id=288, loss=0.586994, lr=0.000661,acc=0.824 ETA 07:38:33
[TRAIN] epoch=5, batch_id=298, loss=0.585526, lr=0.000656,acc=0.825 ETA 09:30:23
[EVAL] epoch=5
Evaluating top_k_accuracy ...
top1_acc 0.7523
top5_acc 0.9403
Evaluating mean_class_accuracy ...
mean_acc 0.7508
Save best model
[TRAIN] epoch=6, batch_id=10, loss=0.425241, lr=0.000650,acc=0.847 ETA 114:37:22
[TRAIN] epoch=6, batch_id=20, loss=0.466748, lr=0.000645,acc=0.855 ETA 07:55:07
[TRAIN] epoch=6, batch_id=30, loss=0.485524, lr=0.000640,acc=0.848 ETA 07:55:06
[TRAIN] epoch=6, batch_id=40, loss=0.489117, lr=0.000635,acc=0.846 ETA 09:25:55
[TRAIN] epoch=6, batch_id=50, loss=0.499492, lr=0.000630,acc=0.846 ETA 07:45:57
[TRAIN] epoch=6, batch_id=60, loss=0.521216, lr=0.000625,acc=0.838 ETA 08:09:03
[TRAIN] epoch=6, batch_id=70, loss=0.531599, lr=0.000620,acc=0.836 ETA 07:41:51
[TRAIN] epoch=6, batch_id=80, loss=0.510377, lr=0.000615,acc=0.841 ETA 07:45:59
[TRAIN] epoch=6, batch_id=90, loss=0.502563, lr=0.000610,acc=0.842 ETA 07:34:17
[TRAIN] epoch=6, batch_id=100, loss=0.502669, lr=0.000605,acc=0.844 ETA 08:29:26
[TRAIN] epoch=6, batch_id=110, loss=0.492140, lr=0.000599,acc=0.847 ETA 07:39:20
[TRAIN] epoch=6, batch_id=120, loss=0.492856, lr=0.000594,acc=0.847 ETA 08:33:08
[TRAIN] epoch=6, batch_id=130, loss=0.493138, lr=0.000589,acc=0.848 ETA 08:11:59
[TRAIN] epoch=6, batch_id=140, loss=0.487700, lr=0.000584,acc=0.848 ETA 07:47:31
[TRAIN] epoch=6, batch_id=150, loss=0.490060, lr=0.000579,acc=0.849 ETA 07:48:28
[TRAIN] epoch=6, batch_id=160, loss=0.492550, lr=0.000574,acc=0.849 ETA 07:49:25
[TRAIN] epoch=6, batch_id=170, loss=0.488786, lr=0.000568,acc=0.850 ETA 07:48:44
[TRAIN] epoch=6, batch_id=180, loss=0.492927, lr=0.000563,acc=0.849 ETA 08:08:49
[TRAIN] epoch=6, batch_id=190, loss=0.492410, lr=0.000558,acc=0.849 ETA 09:21:09
[TRAIN] epoch=6, batch_id=200, loss=0.491508, lr=0.000553,acc=0.850 ETA 07:46:47
[TRAIN] epoch=6, batch_id=210, loss=0.490364, lr=0.000547,acc=0.850 ETA 09:10:54
[TRAIN] epoch=6, batch_id=220, loss=0.490463, lr=0.000542,acc=0.851 ETA 07:58:30
[TRAIN] epoch=6, batch_id=230, loss=0.489062, lr=0.000537,acc=0.851 ETA 08:40:11
[TRAIN] epoch=6, batch_id=240, loss=0.485800, lr=0.000532,acc=0.851 ETA 08:39:53
[TRAIN] epoch=6, batch_id=250, loss=0.487983, lr=0.000526,acc=0.850 ETA 08:38:54
[TRAIN] epoch=6, batch_id=260, loss=0.487528, lr=0.000521,acc=0.851 ETA 07:48:55
[TRAIN] epoch=6, batch_id=270, loss=0.485724, lr=0.000516,acc=0.852 ETA 08:50:57
[TRAIN] epoch=6, batch_id=280, loss=0.482534, lr=0.000511,acc=0.852 ETA 07:45:45
[TRAIN] epoch=6, batch_id=290, loss=0.479242, lr=0.000505,acc=0.854 ETA 07:40:54
[EVAL] epoch=6
Evaluating top_k_accuracy ...
top1_acc 0.7621
top5_acc 0.9461
Evaluating mean_class_accuracy ...
mean_acc 0.7611
Save best model
[TRAIN] epoch=7, batch_id=2, loss=0.377763, lr=0.000500,acc=0.891 ETA 113:01:45
[TRAIN] epoch=7, batch_id=12, loss=0.339160, lr=0.000495,acc=0.901 ETA 08:08:54
[TRAIN] epoch=7, batch_id=22, loss=0.349695, lr=0.000489,acc=0.898 ETA 08:09:02
[TRAIN] epoch=7, batch_id=32, loss=0.382337, lr=0.000484,acc=0.882 ETA 08:26:46
[TRAIN] epoch=7, batch_id=42, loss=0.395068, lr=0.000479,acc=0.875 ETA 08:19:53
[TRAIN] epoch=7, batch_id=52, loss=0.374991, lr=0.000474,acc=0.882 ETA 07:56:49
[TRAIN] epoch=7, batch_id=62, loss=0.403624, lr=0.000468,acc=0.874 ETA 07:50:09
[TRAIN] epoch=7, batch_id=72, loss=0.402673, lr=0.000463,acc=0.874 ETA 07:54:20
[TRAIN] epoch=7, batch_id=82, loss=0.406572, lr=0.000458,acc=0.871 ETA 07:55:36
[TRAIN] epoch=7, batch_id=92, loss=0.403054, lr=0.000453,acc=0.872 ETA 07:36:21
[TRAIN] epoch=7, batch_id=102, loss=0.414546, lr=0.000447,acc=0.872 ETA 08:58:42
[TRAIN] epoch=7, batch_id=112, loss=0.411942, lr=0.000442,acc=0.872 ETA 07:42:10
[TRAIN] epoch=7, batch_id=122, loss=0.411575, lr=0.000437,acc=0.871 ETA 07:54:19
[TRAIN] epoch=7, batch_id=132, loss=0.406324, lr=0.000432,acc=0.875 ETA 08:24:27
[TRAIN] epoch=7, batch_id=142, loss=0.405387, lr=0.000426,acc=0.875 ETA 07:52:50
[TRAIN] epoch=7, batch_id=152, loss=0.406678, lr=0.000421,acc=0.874 ETA 07:39:17
[TRAIN] epoch=7, batch_id=162, loss=0.406803, lr=0.000416,acc=0.875 ETA 07:58:32
[TRAIN] epoch=7, batch_id=172, loss=0.405324, lr=0.000411,acc=0.876 ETA 07:40:25
[TRAIN] epoch=7, batch_id=182, loss=0.407414, lr=0.000406,acc=0.874 ETA 07:51:56
[TRAIN] epoch=7, batch_id=192, loss=0.403131, lr=0.000401,acc=0.876 ETA 07:48:27
[TRAIN] epoch=7, batch_id=202, loss=0.406363, lr=0.000395,acc=0.876 ETA 08:13:12
[TRAIN] epoch=7, batch_id=212, loss=0.406471, lr=0.000390,acc=0.876 ETA 07:50:46
[TRAIN] epoch=7, batch_id=222, loss=0.407253, lr=0.000385,acc=0.876 ETA 09:29:27
[TRAIN] epoch=7, batch_id=232, loss=0.408912, lr=0.000380,acc=0.876 ETA 07:49:31
[TRAIN] epoch=7, batch_id=242, loss=0.411240, lr=0.000375,acc=0.875 ETA 09:38:44
[TRAIN] epoch=7, batch_id=252, loss=0.411205, lr=0.000370,acc=0.875 ETA 08:06:14
[TRAIN] epoch=7, batch_id=262, loss=0.410942, lr=0.000365,acc=0.876 ETA 07:58:41
[TRAIN] epoch=7, batch_id=272, loss=0.409585, lr=0.000360,acc=0.877 ETA 08:19:09
[TRAIN] epoch=7, batch_id=282, loss=0.410560, lr=0.000355,acc=0.877 ETA 08:05:32
[TRAIN] epoch=7, batch_id=292, loss=0.408817, lr=0.000350,acc=0.878 ETA 08:04:53
[EVAL] epoch=7
Evaluating top_k_accuracy ...
top1_acc 0.7624
top5_acc 0.9403
Evaluating mean_class_accuracy ...
mean_acc 0.7640
Save best model
[TRAIN] epoch=8, batch_id=4, loss=0.330796, lr=0.000344,acc=0.891 ETA 114:53:06
[TRAIN] epoch=8, batch_id=14, loss=0.428012, lr=0.000339,acc=0.882 ETA 08:59:16
[TRAIN] epoch=8, batch_id=24, loss=0.384444, lr=0.000335,acc=0.884 ETA 10:07:24
[TRAIN] epoch=8, batch_id=34, loss=0.377979, lr=0.000330,acc=0.885 ETA 10:28:07
[TRAIN] epoch=8, batch_id=44, loss=0.372613, lr=0.000325,acc=0.887 ETA 08:00:11
[TRAIN] epoch=8, batch_id=54, loss=0.394203, lr=0.000320,acc=0.881 ETA 08:31:54
[TRAIN] epoch=8, batch_id=64, loss=0.389506, lr=0.000315,acc=0.883 ETA 07:56:59
[TRAIN] epoch=8, batch_id=74, loss=0.398303, lr=0.000310,acc=0.880 ETA 08:27:19
[TRAIN] epoch=8, batch_id=84, loss=0.398856, lr=0.000305,acc=0.879 ETA 07:47:27
[TRAIN] epoch=8, batch_id=94, loss=0.391835, lr=0.000300,acc=0.881 ETA 08:23:25
[TRAIN] epoch=8, batch_id=104, loss=0.390016, lr=0.000295,acc=0.883 ETA 09:33:47
[TRAIN] epoch=8, batch_id=114, loss=0.392416, lr=0.000291,acc=0.883 ETA 07:46:44
[TRAIN] epoch=8, batch_id=124, loss=0.388445, lr=0.000286,acc=0.885 ETA 08:35:32
[TRAIN] epoch=8, batch_id=134, loss=0.384685, lr=0.000281,acc=0.886 ETA 08:12:26
[TRAIN] epoch=8, batch_id=144, loss=0.378573, lr=0.000276,acc=0.888 ETA 08:42:12
[TRAIN] epoch=8, batch_id=154, loss=0.379597, lr=0.000272,acc=0.889 ETA 07:52:17
[TRAIN] epoch=8, batch_id=164, loss=0.376665, lr=0.000267,acc=0.889 ETA 08:39:56
[TRAIN] epoch=8, batch_id=174, loss=0.372386, lr=0.000262,acc=0.891 ETA 07:53:02
[TRAIN] epoch=8, batch_id=184, loss=0.370826, lr=0.000258,acc=0.891 ETA 08:33:44
[TRAIN] epoch=8, batch_id=194, loss=0.370375, lr=0.000253,acc=0.891 ETA 07:52:59
[TRAIN] epoch=8, batch_id=204, loss=0.370081, lr=0.000248,acc=0.891 ETA 08:42:23
[TRAIN] epoch=8, batch_id=214, loss=0.367459, lr=0.000244,acc=0.891 ETA 07:38:23
[TRAIN] epoch=8, batch_id=224, loss=0.367507, lr=0.000239,acc=0.891 ETA 08:32:48
[TRAIN] epoch=8, batch_id=234, loss=0.364413, lr=0.000235,acc=0.892 ETA 07:36:18
[TRAIN] epoch=8, batch_id=244, loss=0.366223, lr=0.000230,acc=0.891 ETA 08:23:20
[TRAIN] epoch=8, batch_id=254, loss=0.364950, lr=0.000226,acc=0.892 ETA 07:57:05
[TRAIN] epoch=8, batch_id=264, loss=0.360990, lr=0.000222,acc=0.893 ETA 08:41:37
[TRAIN] epoch=8, batch_id=274, loss=0.359169, lr=0.000217,acc=0.893 ETA 07:49:45
[TRAIN] epoch=8, batch_id=284, loss=0.361477, lr=0.000213,acc=0.892 ETA 07:43:24
[TRAIN] epoch=8, batch_id=294, loss=0.361567, lr=0.000209,acc=0.892 ETA 07:41:10
[EVAL] epoch=8
Evaluating top_k_accuracy ...
top1_acc 0.7706
top5_acc 0.9445
Evaluating mean_class_accuracy ...
mean_acc 0.7704
Save best model
[TRAIN] epoch=9, batch_id=6, loss=0.309368, lr=0.000204,acc=0.917 ETA 113:30:19
[TRAIN] epoch=9, batch_id=16, loss=0.301736, lr=0.000200,acc=0.916 ETA 07:49:15
[TRAIN] epoch=9, batch_id=26, loss=0.300604, lr=0.000196,acc=0.910 ETA 12:12:57
[TRAIN] epoch=9, batch_id=36, loss=0.337108, lr=0.000192,acc=0.897 ETA 08:36:18
[TRAIN] epoch=9, batch_id=46, loss=0.332327, lr=0.000188,acc=0.897 ETA 07:39:48
[TRAIN] epoch=9, batch_id=56, loss=0.340249, lr=0.000184,acc=0.897 ETA 07:48:07
[TRAIN] epoch=9, batch_id=66, loss=0.338336, lr=0.000180,acc=0.899 ETA 07:48:33
[TRAIN] epoch=9, batch_id=76, loss=0.335788, lr=0.000175,acc=0.898 ETA 08:43:10
[TRAIN] epoch=9, batch_id=86, loss=0.337280, lr=0.000171,acc=0.901 ETA 07:24:03
[TRAIN] epoch=9, batch_id=96, loss=0.328025, lr=0.000168,acc=0.903 ETA 07:33:09
[TRAIN] epoch=9, batch_id=106, loss=0.335145, lr=0.000164,acc=0.901 ETA 07:27:08
[TRAIN] epoch=9, batch_id=116, loss=0.340509, lr=0.000160,acc=0.901 ETA 11:13:21
[TRAIN] epoch=9, batch_id=126, loss=0.340696, lr=0.000156,acc=0.901 ETA 15:22:42
[TRAIN] epoch=9, batch_id=136, loss=0.337495, lr=0.000152,acc=0.902 ETA 11:01:41
[TRAIN] epoch=9, batch_id=146, loss=0.342444, lr=0.000148,acc=0.900 ETA 11:38:15
[TRAIN] epoch=9, batch_id=156, loss=0.346404, lr=0.000145,acc=0.898 ETA 07:36:08
[TRAIN] epoch=9, batch_id=166, loss=0.345658, lr=0.000141,acc=0.898 ETA 07:29:56
[TRAIN] epoch=9, batch_id=176, loss=0.345038, lr=0.000137,acc=0.898 ETA 07:44:22
[TRAIN] epoch=9, batch_id=186, loss=0.342876, lr=0.000134,acc=0.899 ETA 07:20:31
[TRAIN] epoch=9, batch_id=196, loss=0.339204, lr=0.000130,acc=0.900 ETA 07:32:44
[TRAIN] epoch=9, batch_id=206, loss=0.336830, lr=0.000127,acc=0.900 ETA 07:26:02
[TRAIN] epoch=9, batch_id=216, loss=0.334462, lr=0.000123,acc=0.901 ETA 07:57:48
[TRAIN] epoch=9, batch_id=226, loss=0.335398, lr=0.000120,acc=0.900 ETA 07:22:16
[TRAIN] epoch=9, batch_id=236, loss=0.334683, lr=0.000116,acc=0.900 ETA 08:43:34
[TRAIN] epoch=9, batch_id=246, loss=0.334675, lr=0.000113,acc=0.900 ETA 07:33:00
[TRAIN] epoch=9, batch_id=256, loss=0.335239, lr=0.000110,acc=0.900 ETA 07:30:10
[TRAIN] epoch=9, batch_id=266, loss=0.334259, lr=0.000106,acc=0.900 ETA 08:26:50
[TRAIN] epoch=9, batch_id=276, loss=0.335878, lr=0.000103,acc=0.900 ETA 07:39:54
[TRAIN] epoch=9, batch_id=286, loss=0.335610, lr=0.000100,acc=0.900 ETA 08:30:31
[TRAIN] epoch=9, batch_id=296, loss=0.336482, lr=0.000097,acc=0.900 ETA 08:21:26
[EVAL] epoch=9
Evaluating top_k_accuracy ...
top1_acc 0.7756
top5_acc 0.9466
Evaluating mean_class_accuracy ...
mean_acc 0.7759
Save best model
[TRAIN] epoch=10, batch_id=8, loss=0.251427, lr=0.000094,acc=0.930 ETA 113:55:28
[TRAIN] epoch=10, batch_id=18, loss=0.316339, lr=0.000091,acc=0.899 ETA 07:50:28
[TRAIN] epoch=10, batch_id=28, loss=0.334128, lr=0.000088,acc=0.897 ETA 10:50:00
[TRAIN] epoch=10, batch_id=38, loss=0.311916, lr=0.000085,acc=0.904 ETA 08:51:29
[TRAIN] epoch=10, batch_id=48, loss=0.303772, lr=0.000082,acc=0.905 ETA 08:28:24
[TRAIN] epoch=10, batch_id=58, loss=0.308682, lr=0.000079,acc=0.905 ETA 07:41:06
[TRAIN] epoch=10, batch_id=68, loss=0.330732, lr=0.000076,acc=0.900 ETA 07:24:20
[TRAIN] epoch=10, batch_id=78, loss=0.332513, lr=0.000073,acc=0.899 ETA 07:29:40
[TRAIN] epoch=10, batch_id=88, loss=0.335433, lr=0.000071,acc=0.900 ETA 10:58:40
[TRAIN] epoch=10, batch_id=98, loss=0.340635, lr=0.000068,acc=0.897 ETA 12:52:12
[TRAIN] epoch=10, batch_id=108, loss=0.337134, lr=0.000065,acc=0.898 ETA 07:22:59
[TRAIN] epoch=10, batch_id=118, loss=0.332007, lr=0.000063,acc=0.899 ETA 08:55:41
[TRAIN] epoch=10, batch_id=128, loss=0.333939, lr=0.000060,acc=0.897 ETA 07:45:24
[TRAIN] epoch=10, batch_id=138, loss=0.332413, lr=0.000058,acc=0.899 ETA 08:49:12
[TRAIN] epoch=10, batch_id=148, loss=0.326756, lr=0.000055,acc=0.900 ETA 09:03:25
[TRAIN] epoch=10, batch_id=158, loss=0.324395, lr=0.000053,acc=0.901 ETA 07:57:05
[TRAIN] epoch=10, batch_id=168, loss=0.321920, lr=0.000051,acc=0.901 ETA 07:17:33
[TRAIN] epoch=10, batch_id=178, loss=0.320117, lr=0.000048,acc=0.902 ETA 07:24:33
[TRAIN] epoch=10, batch_id=188, loss=0.321391, lr=0.000046,acc=0.901 ETA 07:33:30
[TRAIN] epoch=10, batch_id=198, loss=0.318198, lr=0.000044,acc=0.902 ETA 07:49:17
[TRAIN] epoch=10, batch_id=208, loss=0.318744, lr=0.000042,acc=0.901 ETA 07:59:08
[TRAIN] epoch=10, batch_id=218, loss=0.318945, lr=0.000040,acc=0.901 ETA 09:07:46
[TRAIN] epoch=10, batch_id=228, loss=0.320051, lr=0.000038,acc=0.900 ETA 12:42:02
[TRAIN] epoch=10, batch_id=238, loss=0.318011, lr=0.000036,acc=0.900 ETA 10:40:23
[TRAIN] epoch=10, batch_id=248, loss=0.317414, lr=0.000034,acc=0.900 ETA 07:22:09
[TRAIN] epoch=10, batch_id=258, loss=0.317688, lr=0.000032,acc=0.900 ETA 07:29:49
[TRAIN] epoch=10, batch_id=268, loss=0.315845, lr=0.000030,acc=0.901 ETA 07:26:11
[TRAIN] epoch=10, batch_id=278, loss=0.313585, lr=0.000028,acc=0.901 ETA 11:04:19
[TRAIN] epoch=10, batch_id=288, loss=0.315297, lr=0.000026,acc=0.901 ETA 07:42:20
[TRAIN] epoch=10, batch_id=298, loss=0.318789, lr=0.000025,acc=0.900 ETA 08:53:27
[EVAL] epoch=10
Evaluating top_k_accuracy ...
top1_acc 0.7782
top5_acc 0.9495
Evaluating mean_class_accuracy ...
mean_acc 0.7782
Save best model
[TRAIN] epoch=11, batch_id=10, loss=0.325004, lr=0.000023,acc=0.906 ETA 111:26:57
[TRAIN] epoch=11, batch_id=20, loss=0.272827, lr=0.000022,acc=0.917 ETA 08:01:37
[TRAIN] epoch=11, batch_id=30, loss=0.280245, lr=0.000020,acc=0.910 ETA 07:50:12
[TRAIN] epoch=11, batch_id=40, loss=0.298265, lr=0.000019,acc=0.903 ETA 07:30:02
[TRAIN] epoch=11, batch_id=50, loss=0.301923, lr=0.000017,acc=0.901 ETA 07:34:42
[TRAIN] epoch=11, batch_id=60, loss=0.296235, lr=0.000016,acc=0.906 ETA 07:45:31
[TRAIN] epoch=11, batch_id=70, loss=0.297927, lr=0.000015,acc=0.905 ETA 11:13:22
[TRAIN] epoch=11, batch_id=80, loss=0.299705, lr=0.000013,acc=0.906 ETA 10:37:29
[TRAIN] epoch=11, batch_id=90, loss=0.303301, lr=0.000012,acc=0.906 ETA 07:26:34
[TRAIN] epoch=11, batch_id=100, loss=0.300440, lr=0.000011,acc=0.908 ETA 07:07:33
[TRAIN] epoch=11, batch_id=110, loss=0.307589, lr=0.000010,acc=0.907 ETA 08:14:55
[TRAIN] epoch=11, batch_id=120, loss=0.305477, lr=0.000009,acc=0.908 ETA 07:19:14
[TRAIN] epoch=11, batch_id=130, loss=0.308509, lr=0.000008,acc=0.909 ETA 09:07:09
[TRAIN] epoch=11, batch_id=140, loss=0.308889, lr=0.000007,acc=0.909 ETA 07:22:51
[TRAIN] epoch=11, batch_id=150, loss=0.307994, lr=0.000006,acc=0.909 ETA 07:55:22
[TRAIN] epoch=11, batch_id=160, loss=0.311006, lr=0.000005,acc=0.910 ETA 07:23:03
[TRAIN] epoch=11, batch_id=170, loss=0.314251, lr=0.000005,acc=0.908 ETA 07:59:18
[TRAIN] epoch=11, batch_id=180, loss=0.309963, lr=0.000004,acc=0.910 ETA 07:23:26
[TRAIN] epoch=11, batch_id=190, loss=0.307194, lr=0.000003,acc=0.911 ETA 09:21:44
[TRAIN] epoch=11, batch_id=200, loss=0.305981, lr=0.000003,acc=0.912 ETA 07:16:06
[TRAIN] epoch=11, batch_id=210, loss=0.307780, lr=0.000002,acc=0.911 ETA 07:41:05
[TRAIN] epoch=11, batch_id=220, loss=0.310999, lr=0.000002,acc=0.910 ETA 07:22:21
[TRAIN] epoch=11, batch_id=230, loss=0.308919, lr=0.000001,acc=0.911 ETA 07:40:39
[TRAIN] epoch=11, batch_id=240, loss=0.312519, lr=0.000001,acc=0.910 ETA 07:14:55
[TRAIN] epoch=11, batch_id=250, loss=0.312192, lr=0.000001,acc=0.910 ETA 09:06:32
[TRAIN] epoch=11, batch_id=260, loss=0.313695, lr=0.000000,acc=0.909 ETA 07:08:46
[TRAIN] epoch=11, batch_id=270, loss=0.314367, lr=0.000000,acc=0.909 ETA 07:33:34
[TRAIN] epoch=11, batch_id=280, loss=0.313260, lr=0.000000,acc=0.909 ETA 07:17:31
[TRAIN] epoch=11, batch_id=290, loss=0.311644, lr=0.000000,acc=0.909 ETA 07:22:52
[EVAL] epoch=11
Evaluating top_k_accuracy ...
top1_acc 0.7774
top5_acc 0.9495
Evaluating mean_class_accuracy ...
mean_acc 0.7774
[TRAIN] epoch=12, batch_id=2, loss=0.164214, lr=0.000000,acc=0.969 ETA 106:51:46
[TRAIN] epoch=12, batch_id=12, loss=0.303883, lr=0.000000,acc=0.914 ETA 07:59:15
[TRAIN] epoch=12, batch_id=22, loss=0.293154, lr=0.000000,acc=0.918 ETA 07:30:39
[TRAIN] epoch=12, batch_id=32, loss=0.318384, lr=0.000000,acc=0.905 ETA 08:28:53
[TRAIN] epoch=12, batch_id=42, loss=0.328279, lr=0.000000,acc=0.903 ETA 07:20:46
[TRAIN] epoch=12, batch_id=52, loss=0.321869, lr=0.000001,acc=0.904 ETA 07:32:58
[TRAIN] epoch=12, batch_id=62, loss=0.324996, lr=0.000001,acc=0.903 ETA 07:17:13
[TRAIN] epoch=12, batch_id=72, loss=0.325243, lr=0.000001,acc=0.902 ETA 07:28:41
[TRAIN] epoch=12, batch_id=82, loss=0.324002, lr=0.000002,acc=0.904 ETA 07:38:56
[TRAIN] epoch=12, batch_id=92, loss=0.327094, lr=0.000002,acc=0.900 ETA 08:40:54
[TRAIN] epoch=12, batch_id=102, loss=0.326476, lr=0.000003,acc=0.900 ETA 07:28:30
[TRAIN] epoch=12, batch_id=112, loss=0.330565, lr=0.000003,acc=0.898 ETA 08:59:01
[TRAIN] epoch=12, batch_id=122, loss=0.329308, lr=0.000004,acc=0.898 ETA 07:21:37
[TRAIN] epoch=12, batch_id=132, loss=0.323328, lr=0.000005,acc=0.900 ETA 09:06:24
[TRAIN] epoch=12, batch_id=142, loss=0.324947, lr=0.000005,acc=0.900 ETA 07:20:11
[TRAIN] epoch=12, batch_id=152, loss=0.324736, lr=0.000006,acc=0.900 ETA 07:55:19
[TRAIN] epoch=12, batch_id=162, loss=0.322854, lr=0.000007,acc=0.900 ETA 07:29:21
[TRAIN] epoch=12, batch_id=172, loss=0.319563, lr=0.000008,acc=0.902 ETA 07:32:39
[TRAIN] epoch=12, batch_id=182, loss=0.319408, lr=0.000009,acc=0.902 ETA 11:14:39
[TRAIN] epoch=12, batch_id=192, loss=0.323115, lr=0.000010,acc=0.900 ETA 09:24:34
[TRAIN] epoch=12, batch_id=202, loss=0.321884, lr=0.000011,acc=0.901 ETA 07:28:21
[TRAIN] epoch=12, batch_id=212, loss=0.322569, lr=0.000012,acc=0.901 ETA 08:02:03
[TRAIN] epoch=12, batch_id=222, loss=0.322953, lr=0.000013,acc=0.901 ETA 07:34:42
[TRAIN] epoch=12, batch_id=232, loss=0.321154, lr=0.000015,acc=0.902 ETA 07:25:07
[TRAIN] epoch=12, batch_id=242, loss=0.322172, lr=0.000016,acc=0.901 ETA 08:57:25
[TRAIN] epoch=12, batch_id=252, loss=0.320705, lr=0.000017,acc=0.902 ETA 11:31:36
[TRAIN] epoch=12, batch_id=262, loss=0.319420, lr=0.000019,acc=0.903 ETA 09:22:52
[TRAIN] epoch=12, batch_id=272, loss=0.323168, lr=0.000020,acc=0.902 ETA 08:22:18
[TRAIN] epoch=12, batch_id=282, loss=0.323918, lr=0.000022,acc=0.902 ETA 07:52:24
[TRAIN] epoch=12, batch_id=292, loss=0.322064, lr=0.000023,acc=0.903 ETA 07:44:48
[EVAL] epoch=12
Evaluating top_k_accuracy ...
top1_acc 0.7772
top5_acc 0.9477
Evaluating mean_class_accuracy ...
mean_acc 0.7768
[TRAIN] epoch=13, batch_id=4, loss=0.348384, lr=0.000025,acc=0.883 ETA 107:49:17
[TRAIN] epoch=13, batch_id=14, loss=0.300856, lr=0.000026,acc=0.900 ETA 07:14:21
[TRAIN] epoch=13, batch_id=24, loss=0.303893, lr=0.000028,acc=0.895 ETA 09:51:15
[TRAIN] epoch=13, batch_id=34, loss=0.289672, lr=0.000030,acc=0.905 ETA 07:46:01
[TRAIN] epoch=13, batch_id=44, loss=0.280990, lr=0.000032,acc=0.905 ETA 08:20:40
[TRAIN] epoch=13, batch_id=54, loss=0.282568, lr=0.000034,acc=0.909 ETA 07:09:38
[TRAIN] epoch=13, batch_id=64, loss=0.286755, lr=0.000036,acc=0.906 ETA 07:17:37
[TRAIN] epoch=13, batch_id=74, loss=0.295805, lr=0.000038,acc=0.905 ETA 07:09:45
[TRAIN] epoch=13, batch_id=84, loss=0.291652, lr=0.000040,acc=0.906 ETA 08:14:35
[TRAIN] epoch=13, batch_id=94, loss=0.296769, lr=0.000042,acc=0.906 ETA 07:09:31
[TRAIN] epoch=13, batch_id=104, loss=0.299537, lr=0.000044,acc=0.906 ETA 08:45:20
[TRAIN] epoch=13, batch_id=114, loss=0.293643, lr=0.000046,acc=0.907 ETA 07:07:30
[TRAIN] epoch=13, batch_id=124, loss=0.289488, lr=0.000048,acc=0.909 ETA 08:56:07
[TRAIN] epoch=13, batch_id=134, loss=0.289233, lr=0.000051,acc=0.909 ETA 07:12:27
[TRAIN] epoch=13, batch_id=144, loss=0.292194, lr=0.000053,acc=0.907 ETA 09:01:31
[TRAIN] epoch=13, batch_id=154, loss=0.292939, lr=0.000055,acc=0.906 ETA 07:12:50
[TRAIN] epoch=13, batch_id=164, loss=0.290169, lr=0.000058,acc=0.907 ETA 08:46:00
[TRAIN] epoch=13, batch_id=174, loss=0.289043, lr=0.000060,acc=0.907 ETA 09:01:14
[TRAIN] epoch=13, batch_id=184, loss=0.287317, lr=0.000063,acc=0.907 ETA 07:07:39
[TRAIN] epoch=13, batch_id=194, loss=0.284369, lr=0.000065,acc=0.908 ETA 10:40:44
[TRAIN] epoch=13, batch_id=204, loss=0.287442, lr=0.000068,acc=0.907 ETA 07:25:31
[TRAIN] epoch=13, batch_id=214, loss=0.290715, lr=0.000071,acc=0.906 ETA 07:35:19
[TRAIN] epoch=13, batch_id=224, loss=0.296952, lr=0.000073,acc=0.904 ETA 07:08:59
[TRAIN] epoch=13, batch_id=234, loss=0.299107, lr=0.000076,acc=0.903 ETA 07:09:52
[TRAIN] epoch=13, batch_id=244, loss=0.299680, lr=0.000079,acc=0.904 ETA 10:43:25
[TRAIN] epoch=13, batch_id=254, loss=0.299873, lr=0.000082,acc=0.904 ETA 07:24:39
[TRAIN] epoch=13, batch_id=264, loss=0.303009, lr=0.000085,acc=0.903 ETA 07:30:54
[TRAIN] epoch=13, batch_id=274, loss=0.302170, lr=0.000088,acc=0.904 ETA 09:12:40
[TRAIN] epoch=13, batch_id=284, loss=0.301618, lr=0.000091,acc=0.904 ETA 10:10:36
[TRAIN] epoch=13, batch_id=294, loss=0.300242, lr=0.000094,acc=0.905 ETA 08:03:01
[EVAL] epoch=13
Evaluating top_k_accuracy ...
top1_acc 0.7740
top5_acc 0.9466
Evaluating mean_class_accuracy ...
mean_acc 0.7748
[TRAIN] epoch=14, batch_id=6, loss=0.200602, lr=0.000097,acc=0.932 ETA 110:28:03
[TRAIN] epoch=14, batch_id=16, loss=0.280895, lr=0.000100,acc=0.908 ETA 07:16:32
[TRAIN] epoch=14, batch_id=26, loss=0.293733, lr=0.000103,acc=0.901 ETA 07:16:04
[TRAIN] epoch=14, batch_id=36, loss=0.304284, lr=0.000106,acc=0.905 ETA 07:15:45
[TRAIN] epoch=14, batch_id=46, loss=0.312319, lr=0.000110,acc=0.903 ETA 07:38:20
[TRAIN] epoch=14, batch_id=56, loss=0.305898, lr=0.000113,acc=0.907 ETA 07:10:48
[TRAIN] epoch=14, batch_id=66, loss=0.312040, lr=0.000116,acc=0.907 ETA 07:15:15
[TRAIN] epoch=14, batch_id=76, loss=0.318426, lr=0.000120,acc=0.907 ETA 07:14:42
[TRAIN] epoch=14, batch_id=86, loss=0.310671, lr=0.000123,acc=0.908 ETA 07:33:19
[TRAIN] epoch=14, batch_id=96, loss=0.319051, lr=0.000127,acc=0.905 ETA 08:33:42
[TRAIN] epoch=14, batch_id=106, loss=0.319887, lr=0.000130,acc=0.903 ETA 07:05:27
[TRAIN] epoch=14, batch_id=116, loss=0.320654, lr=0.000134,acc=0.902 ETA 07:08:12
[TRAIN] epoch=14, batch_id=126, loss=0.316268, lr=0.000137,acc=0.903 ETA 07:16:04
[TRAIN] epoch=14, batch_id=136, loss=0.315078, lr=0.000141,acc=0.903 ETA 08:14:01
[TRAIN] epoch=14, batch_id=146, loss=0.312804, lr=0.000145,acc=0.904 ETA 07:00:35
[TRAIN] epoch=14, batch_id=156, loss=0.312128, lr=0.000148,acc=0.904 ETA 07:12:14
[TRAIN] epoch=14, batch_id=166, loss=0.305232, lr=0.000152,acc=0.906 ETA 06:57:29
[TRAIN] epoch=14, batch_id=176, loss=0.305722, lr=0.000156,acc=0.906 ETA 08:47:13
[TRAIN] epoch=14, batch_id=186, loss=0.307307, lr=0.000160,acc=0.905 ETA 07:08:59
[TRAIN] epoch=14, batch_id=196, loss=0.307936, lr=0.000164,acc=0.905 ETA 07:09:27
[TRAIN] epoch=14, batch_id=206, loss=0.308418, lr=0.000168,acc=0.905 ETA 06:58:03
[TRAIN] epoch=14, batch_id=216, loss=0.306102, lr=0.000171,acc=0.906 ETA 07:08:18
[TRAIN] epoch=14, batch_id=226, loss=0.310587, lr=0.000175,acc=0.905 ETA 07:08:08
[TRAIN] epoch=14, batch_id=236, loss=0.310207, lr=0.000180,acc=0.905 ETA 07:20:00
[TRAIN] epoch=14, batch_id=246, loss=0.312128, lr=0.000184,acc=0.904 ETA 06:58:34
[TRAIN] epoch=14, batch_id=256, loss=0.313241, lr=0.000188,acc=0.903 ETA 07:11:43
[TRAIN] epoch=14, batch_id=266, loss=0.309997, lr=0.000192,acc=0.905 ETA 06:56:00
[TRAIN] epoch=14, batch_id=276, loss=0.307864, lr=0.000196,acc=0.906 ETA 07:02:38
[TRAIN] epoch=14, batch_id=286, loss=0.307018, lr=0.000200,acc=0.906 ETA 07:00:53
[TRAIN] epoch=14, batch_id=296, loss=0.305906, lr=0.000204,acc=0.906 ETA 07:19:51
[EVAL] epoch=14
Evaluating top_k_accuracy ...
top1_acc 0.7774
top5_acc 0.9466
Evaluating mean_class_accuracy ...
mean_acc 0.7770
[TRAIN] epoch=15, batch_id=8, loss=0.341426, lr=0.000209,acc=0.898 ETA 104:02:23
[TRAIN] epoch=15, batch_id=18, loss=0.331310, lr=0.000213,acc=0.901 ETA 07:37:20
[TRAIN] epoch=15, batch_id=28, loss=0.327162, lr=0.000217,acc=0.901 ETA 06:52:54
[TRAIN] epoch=15, batch_id=38, loss=0.303413, lr=0.000222,acc=0.906 ETA 06:52:57
[TRAIN] epoch=15, batch_id=48, loss=0.304901, lr=0.000226,acc=0.905 ETA 06:52:59
[TRAIN] epoch=15, batch_id=58, loss=0.315755, lr=0.000230,acc=0.900 ETA 08:26:15
[TRAIN] epoch=15, batch_id=68, loss=0.319918, lr=0.000235,acc=0.899 ETA 07:08:32
[TRAIN] epoch=15, batch_id=78, loss=0.322953, lr=0.000239,acc=0.902 ETA 07:11:00
[TRAIN] epoch=15, batch_id=88, loss=0.316028, lr=0.000244,acc=0.904 ETA 06:56:50
[TRAIN] epoch=15, batch_id=98, loss=0.316418, lr=0.000248,acc=0.904 ETA 07:23:00
[TRAIN] epoch=15, batch_id=108, loss=0.310076, lr=0.000253,acc=0.906 ETA 06:52:27
[TRAIN] epoch=15, batch_id=118, loss=0.306779, lr=0.000258,acc=0.906 ETA 07:28:22
[TRAIN] epoch=15, batch_id=128, loss=0.306195, lr=0.000262,acc=0.905 ETA 07:01:46
[TRAIN] epoch=15, batch_id=138, loss=0.308234, lr=0.000267,acc=0.904 ETA 09:00:21
[TRAIN] epoch=15, batch_id=148, loss=0.307636, lr=0.000272,acc=0.904 ETA 07:32:31
[TRAIN] epoch=15, batch_id=158, loss=0.307642, lr=0.000276,acc=0.905 ETA 06:57:27
[TRAIN] epoch=15, batch_id=168, loss=0.306969, lr=0.000281,acc=0.905 ETA 06:56:57
[TRAIN] epoch=15, batch_id=178, loss=0.307450, lr=0.000286,acc=0.905 ETA 08:17:40
[TRAIN] epoch=15, batch_id=188, loss=0.307676, lr=0.000291,acc=0.905 ETA 07:08:10
[TRAIN] epoch=15, batch_id=198, loss=0.309124, lr=0.000295,acc=0.905 ETA 07:13:30
[TRAIN] epoch=15, batch_id=208, loss=0.311279, lr=0.000300,acc=0.904 ETA 07:12:16
[TRAIN] epoch=15, batch_id=218, loss=0.313000, lr=0.000305,acc=0.903 ETA 08:03:39
[TRAIN] epoch=15, batch_id=228, loss=0.312163, lr=0.000310,acc=0.904 ETA 07:03:43
[TRAIN] epoch=15, batch_id=238, loss=0.312110, lr=0.000315,acc=0.904 ETA 07:05:01
[TRAIN] epoch=15, batch_id=248, loss=0.313910, lr=0.000320,acc=0.904 ETA 06:59:13
[TRAIN] epoch=15, batch_id=258, loss=0.311035, lr=0.000325,acc=0.905 ETA 07:02:02
[TRAIN] epoch=15, batch_id=268, loss=0.308128, lr=0.000330,acc=0.906 ETA 07:03:51
[TRAIN] epoch=15, batch_id=278, loss=0.305748, lr=0.000335,acc=0.906 ETA 07:43:11
[TRAIN] epoch=15, batch_id=288, loss=0.306211, lr=0.000339,acc=0.907 ETA 08:29:09
[TRAIN] epoch=15, batch_id=298, loss=0.307490, lr=0.000344,acc=0.907 ETA 07:57:19
[EVAL] epoch=15
Evaluating top_k_accuracy ...
top1_acc 0.7684
top5_acc 0.9471
Evaluating mean_class_accuracy ...
mean_acc 0.7690
[TRAIN] epoch=16, batch_id=10, loss=0.288843, lr=0.000350,acc=0.928 ETA 101:43:14
[TRAIN] epoch=16, batch_id=20, loss=0.288927, lr=0.000355,acc=0.916 ETA 09:21:44
[TRAIN] epoch=16, batch_id=30, loss=0.298006, lr=0.000360,acc=0.916 ETA 07:43:03
[TRAIN] epoch=16, batch_id=40, loss=0.299046, lr=0.000365,acc=0.908 ETA 06:57:11
[TRAIN] epoch=16, batch_id=50, loss=0.313552, lr=0.000370,acc=0.905 ETA 06:52:18
[TRAIN] epoch=16, batch_id=60, loss=0.309531, lr=0.000375,acc=0.907 ETA 07:17:30
[TRAIN] epoch=16, batch_id=70, loss=0.303007, lr=0.000380,acc=0.909 ETA 06:54:18
[TRAIN] epoch=16, batch_id=80, loss=0.292359, lr=0.000385,acc=0.913 ETA 06:53:36
[TRAIN] epoch=16, batch_id=90, loss=0.293821, lr=0.000390,acc=0.911 ETA 07:07:59
[TRAIN] epoch=16, batch_id=100, loss=0.299195, lr=0.000395,acc=0.910 ETA 08:05:41
[TRAIN] epoch=16, batch_id=110, loss=0.298064, lr=0.000401,acc=0.909 ETA 07:39:04
[TRAIN] epoch=16, batch_id=120, loss=0.307182, lr=0.000406,acc=0.907 ETA 06:57:47
[TRAIN] epoch=16, batch_id=130, loss=0.304637, lr=0.000411,acc=0.909 ETA 06:56:29
[TRAIN] epoch=16, batch_id=140, loss=0.305220, lr=0.000416,acc=0.910 ETA 07:45:23
[TRAIN] epoch=16, batch_id=150, loss=0.308067, lr=0.000421,acc=0.910 ETA 07:44:28
[TRAIN] epoch=16, batch_id=160, loss=0.309520, lr=0.000426,acc=0.910 ETA 06:50:23
[TRAIN] epoch=16, batch_id=170, loss=0.307587, lr=0.000432,acc=0.911 ETA 06:52:19
[TRAIN] epoch=16, batch_id=180, loss=0.311792, lr=0.000437,acc=0.908 ETA 07:46:32
[TRAIN] epoch=16, batch_id=190, loss=0.306846, lr=0.000442,acc=0.909 ETA 08:43:46
[TRAIN] epoch=16, batch_id=200, loss=0.306539, lr=0.000447,acc=0.909 ETA 08:04:11
[TRAIN] epoch=16, batch_id=210, loss=0.308052, lr=0.000453,acc=0.907 ETA 08:09:04
[TRAIN] epoch=16, batch_id=220, loss=0.307102, lr=0.000458,acc=0.907 ETA 07:59:23
[TRAIN] epoch=16, batch_id=230, loss=0.305860, lr=0.000463,acc=0.907 ETA 07:34:07
[TRAIN] epoch=16, batch_id=240, loss=0.308753, lr=0.000468,acc=0.907 ETA 08:20:26
[TRAIN] epoch=16, batch_id=250, loss=0.311066, lr=0.000474,acc=0.906 ETA 07:59:41
[TRAIN] epoch=16, batch_id=260, loss=0.311945, lr=0.000479,acc=0.906 ETA 10:07:15
[TRAIN] epoch=16, batch_id=270, loss=0.308472, lr=0.000484,acc=0.907 ETA 06:51:06
[TRAIN] epoch=16, batch_id=280, loss=0.308371, lr=0.000489,acc=0.907 ETA 07:07:36
[TRAIN] epoch=16, batch_id=290, loss=0.310214, lr=0.000495,acc=0.906 ETA 06:43:35
[EVAL] epoch=16
Evaluating top_k_accuracy ...
top1_acc 0.7698
top5_acc 0.9440
Evaluating mean_class_accuracy ...
mean_acc 0.7692
[TRAIN] epoch=17, batch_id=2, loss=0.355433, lr=0.000500,acc=0.922 ETA 103:02:56
[TRAIN] epoch=17, batch_id=12, loss=0.253237, lr=0.000505,acc=0.914 ETA 07:52:12
[TRAIN] epoch=17, batch_id=22, loss=0.239010, lr=0.000511,acc=0.925 ETA 10:49:27
[TRAIN] epoch=17, batch_id=32, loss=0.228271, lr=0.000516,acc=0.929 ETA 08:07:48
[TRAIN] epoch=17, batch_id=42, loss=0.240738, lr=0.000521,acc=0.922 ETA 06:49:11
[TRAIN] epoch=17, batch_id=52, loss=0.241654, lr=0.000526,acc=0.922 ETA 07:46:31
[TRAIN] epoch=17, batch_id=62, loss=0.249054, lr=0.000532,acc=0.920 ETA 07:01:56
[TRAIN] epoch=17, batch_id=72, loss=0.248563, lr=0.000537,acc=0.921 ETA 06:54:51
[TRAIN] epoch=17, batch_id=82, loss=0.263657, lr=0.000542,acc=0.920 ETA 07:46:30
[TRAIN] epoch=17, batch_id=92, loss=0.261911, lr=0.000547,acc=0.918 ETA 10:42:22
[TRAIN] epoch=17, batch_id=102, loss=0.268627, lr=0.000553,acc=0.916 ETA 10:39:53
[TRAIN] epoch=17, batch_id=112, loss=0.284226, lr=0.000558,acc=0.912 ETA 10:45:58
[TRAIN] epoch=17, batch_id=122, loss=0.286761, lr=0.000563,acc=0.911 ETA 09:39:56
[TRAIN] epoch=17, batch_id=132, loss=0.294829, lr=0.000568,acc=0.909 ETA 07:27:47
[TRAIN] epoch=17, batch_id=142, loss=0.297579, lr=0.000574,acc=0.908 ETA 20:40:12
[TRAIN] epoch=17, batch_id=152, loss=0.294388, lr=0.000579,acc=0.909 ETA 09:45:36
[TRAIN] epoch=17, batch_id=162, loss=0.289006, lr=0.000584,acc=0.911 ETA 06:58:20
[TRAIN] epoch=17, batch_id=172, loss=0.291091, lr=0.000589,acc=0.909 ETA 06:56:24
[TRAIN] epoch=17, batch_id=182, loss=0.295032, lr=0.000594,acc=0.907 ETA 06:55:20
[TRAIN] epoch=17, batch_id=192, loss=0.297697, lr=0.000599,acc=0.907 ETA 06:55:41
[TRAIN] epoch=17, batch_id=202, loss=0.297316, lr=0.000605,acc=0.907 ETA 06:39:59
[TRAIN] epoch=17, batch_id=212, loss=0.296561, lr=0.000610,acc=0.908 ETA 06:41:44
[TRAIN] epoch=17, batch_id=222, loss=0.297428, lr=0.000615,acc=0.908 ETA 06:48:39
[TRAIN] epoch=17, batch_id=232, loss=0.293834, lr=0.000620,acc=0.909 ETA 06:58:54
[TRAIN] epoch=17, batch_id=242, loss=0.292732, lr=0.000625,acc=0.909 ETA 06:51:40
[TRAIN] epoch=17, batch_id=252, loss=0.294105, lr=0.000630,acc=0.909 ETA 07:27:46
[TRAIN] epoch=17, batch_id=262, loss=0.294155, lr=0.000635,acc=0.909 ETA 09:02:59
[TRAIN] epoch=17, batch_id=272, loss=0.292347, lr=0.000640,acc=0.910 ETA 11:14:30
[TRAIN] epoch=17, batch_id=282, loss=0.291988, lr=0.000645,acc=0.910 ETA 07:49:31
[TRAIN] epoch=17, batch_id=292, loss=0.291824, lr=0.000650,acc=0.910 ETA 06:42:37
[EVAL] epoch=17
Evaluating top_k_accuracy ...
top1_acc 0.7613
top5_acc 0.9437
Evaluating mean_class_accuracy ...
mean_acc 0.7615
[TRAIN] epoch=18, batch_id=4, loss=0.300230, lr=0.000656,acc=0.914 ETA 101:31:25
[TRAIN] epoch=18, batch_id=14, loss=0.274951, lr=0.000661,acc=0.913 ETA 09:51:01
[TRAIN] epoch=18, batch_id=24, loss=0.251220, lr=0.000665,acc=0.913 ETA 07:31:46
[TRAIN] epoch=18, batch_id=34, loss=0.243721, lr=0.000670,acc=0.916 ETA 07:47:15
[TRAIN] epoch=18, batch_id=44, loss=0.253392, lr=0.000675,acc=0.915 ETA 08:18:24
[TRAIN] epoch=18, batch_id=54, loss=0.261465, lr=0.000680,acc=0.914 ETA 07:26:15
[TRAIN] epoch=18, batch_id=64, loss=0.264377, lr=0.000685,acc=0.914 ETA 07:05:39
[TRAIN] epoch=18, batch_id=74, loss=0.260810, lr=0.000690,acc=0.914 ETA 06:41:20
[TRAIN] epoch=18, batch_id=84, loss=0.265073, lr=0.000695,acc=0.916 ETA 06:45:36
[TRAIN] epoch=18, batch_id=94, loss=0.264773, lr=0.000700,acc=0.916 ETA 06:50:08
[TRAIN] epoch=18, batch_id=104, loss=0.263410, lr=0.000705,acc=0.915 ETA 08:52:11
[TRAIN] epoch=18, batch_id=114, loss=0.266030, lr=0.000709,acc=0.914 ETA 06:41:19
[TRAIN] epoch=18, batch_id=124, loss=0.263548, lr=0.000714,acc=0.916 ETA 06:40:55
[TRAIN] epoch=18, batch_id=134, loss=0.266026, lr=0.000719,acc=0.916 ETA 06:42:22
[TRAIN] epoch=18, batch_id=144, loss=0.262356, lr=0.000724,acc=0.916 ETA 08:38:36
[TRAIN] epoch=18, batch_id=154, loss=0.265804, lr=0.000728,acc=0.914 ETA 08:02:55
[TRAIN] epoch=18, batch_id=164, loss=0.273502, lr=0.000733,acc=0.912 ETA 06:43:01
[TRAIN] epoch=18, batch_id=174, loss=0.274770, lr=0.000738,acc=0.912 ETA 06:43:11
[TRAIN] epoch=18, batch_id=184, loss=0.270318, lr=0.000742,acc=0.914 ETA 08:25:55
[TRAIN] epoch=18, batch_id=194, loss=0.275679, lr=0.000747,acc=0.912 ETA 13:06:49
[TRAIN] epoch=18, batch_id=204, loss=0.275022, lr=0.000752,acc=0.913 ETA 10:04:56
[TRAIN] epoch=18, batch_id=214, loss=0.274887, lr=0.000756,acc=0.913 ETA 06:45:14
[TRAIN] epoch=18, batch_id=224, loss=0.276491, lr=0.000761,acc=0.913 ETA 06:43:58
[TRAIN] epoch=18, batch_id=234, loss=0.276894, lr=0.000765,acc=0.913 ETA 07:26:24
[TRAIN] epoch=18, batch_id=244, loss=0.274204, lr=0.000770,acc=0.914 ETA 07:36:40
[TRAIN] epoch=18, batch_id=254, loss=0.277193, lr=0.000774,acc=0.914 ETA 06:45:20
[TRAIN] epoch=18, batch_id=264, loss=0.274888, lr=0.000778,acc=0.914 ETA 07:00:54
[TRAIN] epoch=18, batch_id=274, loss=0.279248, lr=0.000783,acc=0.912 ETA 07:44:39
[TRAIN] epoch=18, batch_id=284, loss=0.279372, lr=0.000787,acc=0.912 ETA 06:53:39
[TRAIN] epoch=18, batch_id=294, loss=0.277496, lr=0.000791,acc=0.913 ETA 06:46:45
[EVAL] epoch=18
Evaluating top_k_accuracy ...
top1_acc 0.7740
top5_acc 0.9471
Evaluating mean_class_accuracy ...
mean_acc 0.7716
[TRAIN] epoch=19, batch_id=6, loss=0.385077, lr=0.000796,acc=0.880 ETA 99:17:24
[TRAIN] epoch=19, batch_id=16, loss=0.317654, lr=0.000800,acc=0.910 ETA 07:24:11
[TRAIN] epoch=19, batch_id=26, loss=0.292255, lr=0.000804,acc=0.919 ETA 06:42:10
[TRAIN] epoch=19, batch_id=36, loss=0.298100, lr=0.000808,acc=0.916 ETA 07:33:58
[TRAIN] epoch=19, batch_id=46, loss=0.319758, lr=0.000812,acc=0.910 ETA 07:02:13
[TRAIN] epoch=19, batch_id=56, loss=0.313117, lr=0.000816,acc=0.909 ETA 08:10:07
[TRAIN] epoch=19, batch_id=66, loss=0.295683, lr=0.000820,acc=0.915 ETA 06:58:29
[TRAIN] epoch=19, batch_id=76, loss=0.295852, lr=0.000825,acc=0.912 ETA 09:53:04
[TRAIN] epoch=19, batch_id=86, loss=0.304471, lr=0.000829,acc=0.908 ETA 07:03:26
[TRAIN] epoch=19, batch_id=96, loss=0.296968, lr=0.000832,acc=0.910 ETA 08:17:24
[TRAIN] epoch=19, batch_id=106, loss=0.287516, lr=0.000836,acc=0.913 ETA 07:00:38
[TRAIN] epoch=19, batch_id=116, loss=0.282738, lr=0.000840,acc=0.915 ETA 07:48:15
[TRAIN] epoch=19, batch_id=126, loss=0.280502, lr=0.000844,acc=0.915 ETA 07:36:05
[TRAIN] epoch=19, batch_id=136, loss=0.276853, lr=0.000848,acc=0.916 ETA 06:44:44
[TRAIN] epoch=19, batch_id=146, loss=0.277144, lr=0.000852,acc=0.916 ETA 06:58:30
[TRAIN] epoch=19, batch_id=156, loss=0.273197, lr=0.000855,acc=0.917 ETA 06:43:50
[TRAIN] epoch=19, batch_id=166, loss=0.272937, lr=0.000859,acc=0.917 ETA 06:48:49
[TRAIN] epoch=19, batch_id=176, loss=0.274538, lr=0.000863,acc=0.917 ETA 06:39:51
[TRAIN] epoch=19, batch_id=186, loss=0.272426, lr=0.000866,acc=0.917 ETA 08:16:11
[TRAIN] epoch=19, batch_id=196, loss=0.272090, lr=0.000870,acc=0.918 ETA 10:32:31
[TRAIN] epoch=19, batch_id=206, loss=0.272797, lr=0.000873,acc=0.917 ETA 08:51:58
[TRAIN] epoch=19, batch_id=216, loss=0.271663, lr=0.000877,acc=0.918 ETA 06:37:45
[TRAIN] epoch=19, batch_id=226, loss=0.267709, lr=0.000880,acc=0.919 ETA 06:40:15
[TRAIN] epoch=19, batch_id=236, loss=0.266685, lr=0.000884,acc=0.919 ETA 06:32:30
[TRAIN] epoch=19, batch_id=246, loss=0.263462, lr=0.000887,acc=0.920 ETA 06:53:48
[TRAIN] epoch=19, batch_id=256, loss=0.263650, lr=0.000890,acc=0.920 ETA 06:38:58
[TRAIN] epoch=19, batch_id=266, loss=0.260501, lr=0.000894,acc=0.921 ETA 07:17:09
[TRAIN] epoch=19, batch_id=276, loss=0.261750, lr=0.000897,acc=0.920 ETA 06:37:38
[TRAIN] epoch=19, batch_id=286, loss=0.259785, lr=0.000900,acc=0.921 ETA 08:14:44
[TRAIN] epoch=19, batch_id=296, loss=0.264138, lr=0.000903,acc=0.920 ETA 06:32:33
[EVAL] epoch=19
Evaluating top_k_accuracy ...
top1_acc 0.7626
top5_acc 0.9426
Evaluating mean_class_accuracy ...
mean_acc 0.7637
[TRAIN] epoch=20, batch_id=8, loss=0.206808, lr=0.000906,acc=0.922 ETA 97:12:27
[TRAIN] epoch=20, batch_id=18, loss=0.234353, lr=0.000909,acc=0.920 ETA 06:48:04
[TRAIN] epoch=20, batch_id=28, loss=0.250796, lr=0.000912,acc=0.920 ETA 06:37:03
[TRAIN] epoch=20, batch_id=38, loss=0.255537, lr=0.000915,acc=0.920 ETA 06:30:03
[TRAIN] epoch=20, batch_id=48, loss=0.253489, lr=0.000918,acc=0.921 ETA 08:01:56
[TRAIN] epoch=20, batch_id=58, loss=0.252870, lr=0.000921,acc=0.921 ETA 07:01:25
[TRAIN] epoch=20, batch_id=68, loss=0.251301, lr=0.000924,acc=0.922 ETA 07:34:30
[TRAIN] epoch=20, batch_id=78, loss=0.265661, lr=0.000927,acc=0.918 ETA 06:38:14
[TRAIN] epoch=20, batch_id=88, loss=0.257858, lr=0.000929,acc=0.919 ETA 07:30:41
[TRAIN] epoch=20, batch_id=98, loss=0.251846, lr=0.000932,acc=0.922 ETA 06:44:51
[TRAIN] epoch=20, batch_id=108, loss=0.256343, lr=0.000935,acc=0.920 ETA 08:07:37
[TRAIN] epoch=20, batch_id=118, loss=0.257903, lr=0.000937,acc=0.919 ETA 16:54:15
[TRAIN] epoch=20, batch_id=128, loss=0.253746, lr=0.000940,acc=0.921 ETA 07:58:20
[TRAIN] epoch=20, batch_id=138, loss=0.253185, lr=0.000942,acc=0.921 ETA 06:38:22
[TRAIN] epoch=20, batch_id=148, loss=0.254619, lr=0.000945,acc=0.920 ETA 06:37:40
[TRAIN] epoch=20, batch_id=158, loss=0.254344, lr=0.000947,acc=0.920 ETA 06:35:26
[TRAIN] epoch=20, batch_id=168, loss=0.249719, lr=0.000949,acc=0.922 ETA 06:36:06
[TRAIN] epoch=20, batch_id=178, loss=0.249624, lr=0.000952,acc=0.923 ETA 07:06:21
[TRAIN] epoch=20, batch_id=188, loss=0.247183, lr=0.000954,acc=0.924 ETA 08:16:44
[TRAIN] epoch=20, batch_id=198, loss=0.247478, lr=0.000956,acc=0.922 ETA 06:41:47
[TRAIN] epoch=20, batch_id=208, loss=0.251945, lr=0.000958,acc=0.921 ETA 06:39:09
[TRAIN] epoch=20, batch_id=218, loss=0.255283, lr=0.000960,acc=0.920 ETA 06:32:47
[TRAIN] epoch=20, batch_id=228, loss=0.257109, lr=0.000962,acc=0.919 ETA 06:25:02
[TRAIN] epoch=20, batch_id=238, loss=0.257837, lr=0.000964,acc=0.919 ETA 06:27:09
[TRAIN] epoch=20, batch_id=248, loss=0.257210, lr=0.000966,acc=0.919 ETA 06:27:14
[TRAIN] epoch=20, batch_id=258, loss=0.255608, lr=0.000968,acc=0.920 ETA 07:44:44
[TRAIN] epoch=20, batch_id=268, loss=0.255888, lr=0.000970,acc=0.920 ETA 07:16:52
[TRAIN] epoch=20, batch_id=278, loss=0.257873, lr=0.000972,acc=0.919 ETA 06:37:46
[TRAIN] epoch=20, batch_id=288, loss=0.253970, lr=0.000974,acc=0.920 ETA 06:37:11
[TRAIN] epoch=20, batch_id=298, loss=0.252213, lr=0.000975,acc=0.921 ETA 06:33:06
[EVAL] epoch=20
Evaluating top_k_accuracy ...
top1_acc 0.7713
top5_acc 0.9418
Evaluating mean_class_accuracy ...
mean_acc 0.7713
[TRAIN] epoch=21, batch_id=10, loss=0.214578, lr=0.000977,acc=0.944 ETA 99:03:16
[TRAIN] epoch=21, batch_id=20, loss=0.225195, lr=0.000978,acc=0.936 ETA 07:34:43
[TRAIN] epoch=21, batch_id=30, loss=0.201169, lr=0.000980,acc=0.943 ETA 06:27:55
[TRAIN] epoch=21, batch_id=40, loss=0.206890, lr=0.000981,acc=0.941 ETA 06:32:36
[TRAIN] epoch=21, batch_id=50, loss=0.212969, lr=0.000983,acc=0.938 ETA 08:05:46
[TRAIN] epoch=21, batch_id=60, loss=0.215872, lr=0.000984,acc=0.939 ETA 06:30:44
[TRAIN] epoch=21, batch_id=70, loss=0.216684, lr=0.000985,acc=0.937 ETA 06:41:03
[TRAIN] epoch=21, batch_id=80, loss=0.222474, lr=0.000987,acc=0.932 ETA 06:32:56
[TRAIN] epoch=21, batch_id=90, loss=0.222331, lr=0.000988,acc=0.932 ETA 06:56:02
[TRAIN] epoch=21, batch_id=100, loss=0.224717, lr=0.000989,acc=0.931 ETA 06:38:31
[TRAIN] epoch=21, batch_id=110, loss=0.221067, lr=0.000990,acc=0.931 ETA 06:30:57
[TRAIN] epoch=21, batch_id=120, loss=0.222516, lr=0.000991,acc=0.930 ETA 06:35:27
[TRAIN] epoch=21, batch_id=130, loss=0.221794, lr=0.000992,acc=0.930 ETA 08:40:47
[TRAIN] epoch=21, batch_id=140, loss=0.221037, lr=0.000993,acc=0.930 ETA 07:22:18
[TRAIN] epoch=21, batch_id=150, loss=0.222582, lr=0.000994,acc=0.931 ETA 06:42:05
[TRAIN] epoch=21, batch_id=160, loss=0.220718, lr=0.000995,acc=0.931 ETA 06:31:08
[TRAIN] epoch=21, batch_id=170, loss=0.228991, lr=0.000995,acc=0.928 ETA 09:08:38
[TRAIN] epoch=21, batch_id=180, loss=0.229311, lr=0.000996,acc=0.929 ETA 09:42:28
[TRAIN] epoch=21, batch_id=190, loss=0.228032, lr=0.000997,acc=0.929 ETA 06:50:58
[TRAIN] epoch=21, batch_id=200, loss=0.228764, lr=0.000997,acc=0.929 ETA 06:54:33
[TRAIN] epoch=21, batch_id=210, loss=0.227579, lr=0.000998,acc=0.929 ETA 07:18:52
[TRAIN] epoch=21, batch_id=220, loss=0.225867, lr=0.000998,acc=0.930 ETA 06:40:06
[TRAIN] epoch=21, batch_id=230, loss=0.225564, lr=0.000999,acc=0.930 ETA 06:44:26
[TRAIN] epoch=21, batch_id=240, loss=0.224819, lr=0.000999,acc=0.931 ETA 06:33:27
[TRAIN] epoch=21, batch_id=250, loss=0.220708, lr=0.000999,acc=0.932 ETA 09:30:19
[TRAIN] epoch=21, batch_id=260, loss=0.221907, lr=0.001000,acc=0.932 ETA 11:06:01
[TRAIN] epoch=21, batch_id=270, loss=0.222008, lr=0.001000,acc=0.932 ETA 06:25:01
[TRAIN] epoch=21, batch_id=280, loss=0.218210, lr=0.001000,acc=0.933 ETA 06:25:51
[TRAIN] epoch=21, batch_id=290, loss=0.220747, lr=0.001000,acc=0.933 ETA 06:18:14
[EVAL] epoch=21
Evaluating top_k_accuracy ...
top1_acc 0.7687
top5_acc 0.9508
Evaluating mean_class_accuracy ...
mean_acc 0.7689
[TRAIN] epoch=22, batch_id=2, loss=0.158926, lr=0.001000,acc=0.938 ETA 96:36:03
[TRAIN] epoch=22, batch_id=12, loss=0.197735, lr=0.001000,acc=0.951 ETA 06:45:21
[TRAIN] epoch=22, batch_id=22, loss=0.254828, lr=0.001000,acc=0.922 ETA 09:20:14
[TRAIN] epoch=22, batch_id=32, loss=0.230623, lr=0.001000,acc=0.928 ETA 11:31:33
[TRAIN] epoch=22, batch_id=42, loss=0.216872, lr=0.001000,acc=0.932 ETA 06:42:28
[TRAIN] epoch=22, batch_id=52, loss=0.219011, lr=0.000999,acc=0.931 ETA 06:37:22
[TRAIN] epoch=22, batch_id=62, loss=0.214754, lr=0.000999,acc=0.932 ETA 06:30:35
[TRAIN] epoch=22, batch_id=72, loss=0.217218, lr=0.000999,acc=0.934 ETA 06:23:28
[TRAIN] epoch=22, batch_id=82, loss=0.222175, lr=0.000998,acc=0.932 ETA 06:26:35
[TRAIN] epoch=22, batch_id=92, loss=0.218123, lr=0.000998,acc=0.933 ETA 06:43:05
[TRAIN] epoch=22, batch_id=102, loss=0.210286, lr=0.000997,acc=0.937 ETA 06:49:48
[TRAIN] epoch=22, batch_id=112, loss=0.211797, lr=0.000997,acc=0.937 ETA 06:55:44
[TRAIN] epoch=22, batch_id=122, loss=0.215008, lr=0.000996,acc=0.936 ETA 08:55:26
[TRAIN] epoch=22, batch_id=132, loss=0.216055, lr=0.000995,acc=0.935 ETA 07:45:25
[TRAIN] epoch=22, batch_id=142, loss=0.214650, lr=0.000995,acc=0.935 ETA 06:42:30
[TRAIN] epoch=22, batch_id=152, loss=0.214062, lr=0.000994,acc=0.936 ETA 06:34:52
[TRAIN] epoch=22, batch_id=162, loss=0.212959, lr=0.000993,acc=0.936 ETA 07:15:22
[TRAIN] epoch=22, batch_id=172, loss=0.214573, lr=0.000992,acc=0.935 ETA 06:33:41
[TRAIN] epoch=22, batch_id=182, loss=0.215358, lr=0.000991,acc=0.935 ETA 08:20:56
[TRAIN] epoch=22, batch_id=192, loss=0.213629, lr=0.000990,acc=0.935 ETA 07:48:36
[TRAIN] epoch=22, batch_id=202, loss=0.210171, lr=0.000989,acc=0.936 ETA 06:51:49
[TRAIN] epoch=22, batch_id=212, loss=0.210449, lr=0.000988,acc=0.935 ETA 06:38:11
[TRAIN] epoch=22, batch_id=222, loss=0.212145, lr=0.000987,acc=0.936 ETA 06:34:04
[TRAIN] epoch=22, batch_id=232, loss=0.213474, lr=0.000985,acc=0.935 ETA 06:27:27
[TRAIN] epoch=22, batch_id=242, loss=0.212488, lr=0.000984,acc=0.935 ETA 07:15:43
[TRAIN] epoch=22, batch_id=252, loss=0.213719, lr=0.000983,acc=0.935 ETA 07:07:04
[TRAIN] epoch=22, batch_id=262, loss=0.214428, lr=0.000981,acc=0.935 ETA 06:59:08
[TRAIN] epoch=22, batch_id=272, loss=0.212208, lr=0.000980,acc=0.935 ETA 07:29:15
[TRAIN] epoch=22, batch_id=282, loss=0.210646, lr=0.000978,acc=0.935 ETA 06:25:07
[TRAIN] epoch=22, batch_id=292, loss=0.207597, lr=0.000977,acc=0.936 ETA 06:27:42
[EVAL] epoch=22
Evaluating top_k_accuracy ...
top1_acc 0.7743
top5_acc 0.9426
Evaluating mean_class_accuracy ...
mean_acc 0.7733
[TRAIN] epoch=23, batch_id=4, loss=0.187292, lr=0.000975,acc=0.930 ETA 93:59:36
[TRAIN] epoch=23, batch_id=14, loss=0.184298, lr=0.000974,acc=0.946 ETA 06:18:23
[TRAIN] epoch=23, batch_id=24, loss=0.168246, lr=0.000972,acc=0.949 ETA 06:17:34
[TRAIN] epoch=23, batch_id=34, loss=0.170755, lr=0.000970,acc=0.947 ETA 06:15:12
[TRAIN] epoch=23, batch_id=44, loss=0.172888, lr=0.000968,acc=0.946 ETA 09:27:40
[TRAIN] epoch=23, batch_id=54, loss=0.175795, lr=0.000966,acc=0.946 ETA 06:53:20
[TRAIN] epoch=23, batch_id=64, loss=0.163407, lr=0.000964,acc=0.949 ETA 06:41:24
[TRAIN] epoch=23, batch_id=74, loss=0.159621, lr=0.000962,acc=0.951 ETA 06:52:44
[TRAIN] epoch=23, batch_id=84, loss=0.165504, lr=0.000960,acc=0.949 ETA 06:30:49
[TRAIN] epoch=23, batch_id=94, loss=0.166646, lr=0.000958,acc=0.949 ETA 06:28:10
[TRAIN] epoch=23, batch_id=104, loss=0.164146, lr=0.000956,acc=0.950 ETA 07:01:54
[TRAIN] epoch=23, batch_id=114, loss=0.164500, lr=0.000954,acc=0.949 ETA 06:22:28
[TRAIN] epoch=23, batch_id=124, loss=0.169447, lr=0.000952,acc=0.946 ETA 06:31:40
[TRAIN] epoch=23, batch_id=134, loss=0.170176, lr=0.000949,acc=0.946 ETA 07:04:36
[TRAIN] epoch=23, batch_id=144, loss=0.170423, lr=0.000947,acc=0.946 ETA 06:39:26
[TRAIN] epoch=23, batch_id=154, loss=0.169556, lr=0.000945,acc=0.946 ETA 06:56:40
[TRAIN] epoch=23, batch_id=164, loss=0.169485, lr=0.000942,acc=0.946 ETA 07:19:55
[TRAIN] epoch=23, batch_id=174, loss=0.176368, lr=0.000940,acc=0.944 ETA 06:23:33
[TRAIN] epoch=23, batch_id=184, loss=0.179050, lr=0.000937,acc=0.944 ETA 09:18:41
[TRAIN] epoch=23, batch_id=194, loss=0.181982, lr=0.000935,acc=0.944 ETA 09:14:12
[TRAIN] epoch=23, batch_id=204, loss=0.178681, lr=0.000932,acc=0.945 ETA 06:22:20
[TRAIN] epoch=23, batch_id=214, loss=0.179351, lr=0.000929,acc=0.945 ETA 06:21:49
[TRAIN] epoch=23, batch_id=224, loss=0.180778, lr=0.000927,acc=0.944 ETA 06:23:32
[TRAIN] epoch=23, batch_id=234, loss=0.183368, lr=0.000924,acc=0.942 ETA 06:29:01
[TRAIN] epoch=23, batch_id=244, loss=0.182419, lr=0.000921,acc=0.943 ETA 08:03:26
[TRAIN] epoch=23, batch_id=254, loss=0.182382, lr=0.000918,acc=0.943 ETA 06:25:49
[TRAIN] epoch=23, batch_id=264, loss=0.185386, lr=0.000915,acc=0.942 ETA 06:21:03
[TRAIN] epoch=23, batch_id=274, loss=0.185389, lr=0.000912,acc=0.942 ETA 06:18:46
[TRAIN] epoch=23, batch_id=284, loss=0.186570, lr=0.000909,acc=0.941 ETA 06:15:15
[TRAIN] epoch=23, batch_id=294, loss=0.185803, lr=0.000906,acc=0.941 ETA 06:13:36
[EVAL] epoch=23
Evaluating top_k_accuracy ...
top1_acc 0.7780
top5_acc 0.9477
Evaluating mean_class_accuracy ...
mean_acc 0.7756
[TRAIN] epoch=24, batch_id=6, loss=0.136942, lr=0.000903,acc=0.958 ETA 94:28:26
[TRAIN] epoch=24, batch_id=16, loss=0.151347, lr=0.000900,acc=0.947 ETA 06:35:21
[TRAIN] epoch=24, batch_id=26, loss=0.145004, lr=0.000897,acc=0.954 ETA 06:28:51
[TRAIN] epoch=24, batch_id=36, loss=0.148963, lr=0.000894,acc=0.951 ETA 06:33:24
[TRAIN] epoch=24, batch_id=46, loss=0.154384, lr=0.000890,acc=0.952 ETA 06:22:52
[TRAIN] epoch=24, batch_id=56, loss=0.158993, lr=0.000887,acc=0.951 ETA 06:27:39
[TRAIN] epoch=24, batch_id=66, loss=0.153428, lr=0.000884,acc=0.954 ETA 06:30:33
[TRAIN] epoch=24, batch_id=76, loss=0.155390, lr=0.000880,acc=0.950 ETA 06:25:11
[TRAIN] epoch=24, batch_id=86, loss=0.161516, lr=0.000877,acc=0.949 ETA 07:14:52
[TRAIN] epoch=24, batch_id=96, loss=0.164150, lr=0.000873,acc=0.949 ETA 08:42:54
[TRAIN] epoch=24, batch_id=106, loss=0.163657, lr=0.000870,acc=0.949 ETA 07:52:41
[TRAIN] epoch=24, batch_id=116, loss=0.163412, lr=0.000866,acc=0.950 ETA 06:32:41
[TRAIN] epoch=24, batch_id=126, loss=0.161380, lr=0.000863,acc=0.951 ETA 08:14:36
[TRAIN] epoch=24, batch_id=136, loss=0.162039, lr=0.000859,acc=0.949 ETA 06:21:49
[TRAIN] epoch=24, batch_id=146, loss=0.162750, lr=0.000855,acc=0.950 ETA 09:30:38
[TRAIN] epoch=24, batch_id=156, loss=0.166855, lr=0.000852,acc=0.949 ETA 07:27:16
[TRAIN] epoch=24, batch_id=166, loss=0.163757, lr=0.000848,acc=0.950 ETA 07:25:24
[TRAIN] epoch=24, batch_id=176, loss=0.162123, lr=0.000844,acc=0.951 ETA 06:36:22
[TRAIN] epoch=24, batch_id=186, loss=0.162109, lr=0.000840,acc=0.951 ETA 06:16:19
[TRAIN] epoch=24, batch_id=196, loss=0.160552, lr=0.000836,acc=0.951 ETA 06:25:40
[TRAIN] epoch=24, batch_id=206, loss=0.161810, lr=0.000832,acc=0.951 ETA 06:18:59
[TRAIN] epoch=24, batch_id=216, loss=0.160484, lr=0.000829,acc=0.952 ETA 07:20:13
[TRAIN] epoch=24, batch_id=226, loss=0.158668, lr=0.000825,acc=0.952 ETA 06:42:45
[TRAIN] epoch=24, batch_id=236, loss=0.159277, lr=0.000820,acc=0.952 ETA 06:30:07
[TRAIN] epoch=24, batch_id=246, loss=0.160024, lr=0.000816,acc=0.952 ETA 06:29:08
[TRAIN] epoch=24, batch_id=256, loss=0.160377, lr=0.000812,acc=0.952 ETA 06:32:03
[TRAIN] epoch=24, batch_id=266, loss=0.160485, lr=0.000808,acc=0.952 ETA 09:36:42
[TRAIN] epoch=24, batch_id=276, loss=0.161814, lr=0.000804,acc=0.952 ETA 08:33:21
[TRAIN] epoch=24, batch_id=286, loss=0.160946, lr=0.000800,acc=0.952 ETA 06:42:59
[TRAIN] epoch=24, batch_id=296, loss=0.161919, lr=0.000796,acc=0.952 ETA 07:12:17
[EVAL] epoch=24
Evaluating top_k_accuracy ...
top1_acc 0.7811
top5_acc 0.9437
Evaluating mean_class_accuracy ...
mean_acc 0.7805
Save best model
[TRAIN] epoch=25, batch_id=8, loss=0.152026, lr=0.000791,acc=0.941 ETA 92:31:09
[TRAIN] epoch=25, batch_id=18, loss=0.128497, lr=0.000787,acc=0.953 ETA 06:25:33
[TRAIN] epoch=25, batch_id=28, loss=0.137082, lr=0.000783,acc=0.954 ETA 06:25:31
[TRAIN] epoch=25, batch_id=38, loss=0.129432, lr=0.000778,acc=0.957 ETA 06:39:27
[TRAIN] epoch=25, batch_id=48, loss=0.140683, lr=0.000774,acc=0.953 ETA 06:59:22
[TRAIN] epoch=25, batch_id=58, loss=0.141955, lr=0.000770,acc=0.955 ETA 06:44:05
[TRAIN] epoch=25, batch_id=68, loss=0.137038, lr=0.000765,acc=0.956 ETA 06:49:53
[TRAIN] epoch=25, batch_id=78, loss=0.133437, lr=0.000761,acc=0.959 ETA 06:45:26
[TRAIN] epoch=25, batch_id=88, loss=0.129000, lr=0.000756,acc=0.960 ETA 06:11:05
[TRAIN] epoch=25, batch_id=98, loss=0.126170, lr=0.000752,acc=0.962 ETA 06:06:22
[TRAIN] epoch=25, batch_id=108, loss=0.127224, lr=0.000747,acc=0.962 ETA 06:16:37
[TRAIN] epoch=25, batch_id=118, loss=0.131691, lr=0.000742,acc=0.961 ETA 06:14:34
[TRAIN] epoch=25, batch_id=128, loss=0.134629, lr=0.000738,acc=0.959 ETA 06:11:59
[TRAIN] epoch=25, batch_id=138, loss=0.134181, lr=0.000733,acc=0.959 ETA 06:09:27
[TRAIN] epoch=25, batch_id=148, loss=0.135750, lr=0.000728,acc=0.958 ETA 06:48:43
[TRAIN] epoch=25, batch_id=158, loss=0.132848, lr=0.000724,acc=0.959 ETA 06:10:46
[TRAIN] epoch=25, batch_id=168, loss=0.133853, lr=0.000719,acc=0.959 ETA 06:14:33
[TRAIN] epoch=25, batch_id=178, loss=0.134229, lr=0.000714,acc=0.959 ETA 06:17:29
[TRAIN] epoch=25, batch_id=188, loss=0.132229, lr=0.000709,acc=0.959 ETA 06:34:51
[TRAIN] epoch=25, batch_id=198, loss=0.132545, lr=0.000705,acc=0.960 ETA 06:13:21
[TRAIN] epoch=25, batch_id=208, loss=0.132882, lr=0.000700,acc=0.959 ETA 06:14:53
[TRAIN] epoch=25, batch_id=218, loss=0.133581, lr=0.000695,acc=0.959 ETA 06:11:34