-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest.py
96 lines (83 loc) · 3.21 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
import os
import argparse
import numpy as np
import paddle
from datasets import SampleFrames, RawFrameDecode, Resize, ThreeCrop, Normalize, FormatShape, Collect
from datasets import RawframeDataset
from models.resnet import ResNet
from models.heads.tsn_clshead import TSNClsHead
from models.recognizers.recognizer2d import Recognizer2D
from utils import load_pretrained_model
from progress_bar import ProgressBar
def parse_args():
parser = argparse.ArgumentParser(description='Model training')
parser.add_argument(
'--dataset_root',
dest='dataset_root',
help='The path of dataset root',
type=str,
default='/Users/alex/baidu/mmaction2/data/ucf101/')
parser.add_argument(
'--pretrained',
dest='pretrained',
help='The pretrained of model',
type=str,
default=None)
parser.add_argument(
'--split',
dest='split',
help='split',
type=int,
default=1)
return parser.parse_args()
if __name__ == '__main__':
args = parse_args()
tranforms = [
SampleFrames(clip_len=16, frame_interval=4, num_clips=10, test_mode=True),
RawFrameDecode(),
Resize(scale=(np.Inf, 256), keep_ratio=True),
ThreeCrop(crop_size=256),
Normalize(mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_bgr=False),
FormatShape(input_format='NCHW'),
Collect(keys=['imgs', 'label'], meta_keys=[])
]
dataset = RawframeDataset(ann_file=os.path.join(args.dataset_root, f'ucf101_val_split_{args.split}_rawframes.txt'),
pipeline=tranforms, data_prefix=os.path.join(args.dataset_root, "rawframes"))
loader = paddle.io.DataLoader(
dataset,
num_workers=0,
batch_size=1,
shuffle=False,
drop_last=False,
return_list=True,
)
backbone = ResNet(depth=50, out_indices=(3,), norm_eval=False, partial_norm=False)
head = TSNClsHead(spatial_size=-1, spatial_type='avg',
with_avg_pool=False,
temporal_feature_size=1,
spatial_feature_size=1,
dropout_ratio=0.5,
in_channels=2048,
init_std=0.01,
num_classes=101,
fcn_testing=True)
model = Recognizer2D(backbone=backbone, cls_head=head,fcn_testing=True,
module_cfg=dict(type='MVF', n_segment=16, alpha=0.125, mvf_freq=(0, 0, 1, 1), mode='THW'),
test_cfg=dict(average_clips='prob'))
if args.pretrained is not None:
load_pretrained_model(model, args.pretrained)
model.eval()
results = []
prog_bar = ProgressBar(len(dataset))
for batch_id, data in enumerate(loader):
with paddle.no_grad():
imgs = data['imgs']
label = data['label']
result = model(imgs, label, return_loss=False)
results.extend(result)
batch_size = len(result)
for _ in range(batch_size):
prog_bar.update()
eval_res = dataset.evaluate(results, metrics=['top_k_accuracy', 'mean_class_accuracy'])
for name, val in eval_res.items():
print(f'{name}: {val:.04f}')