-
Notifications
You must be signed in to change notification settings - Fork 36
/
econometricsCheatSheet.tex
763 lines (610 loc) · 26.3 KB
/
econometricsCheatSheet.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
\documentclass[10pt,landscape]{article}
\usepackage{multicol}
\usepackage{calc}
\usepackage{ifthen}
\usepackage{amsmath}
\usepackage{amsfonts}
\usepackage{lipsum}
\usepackage{booktabs}
\usepackage{xcolor}
\usepackage{threeparttable}
\usepackage{stackengine}
\usepackage{scalerel}
\usepackage[landscape]{geometry}
\definecolor{oucrimson}{RGB}{132,22,23} % OU crimson
\usepackage{hyperref}
\hypersetup{
unicode=true,
bookmarksnumbered=true,
bookmarksopen=true,
bookmarksopenlevel=3,
breaklinks=true,
pdfborder={0 0 0},
colorlinks,
citecolor=oucrimson,
filecolor=oucrimson,
linkcolor=oucrimson,
urlcolor=oucrimson
}
% To make this come out properly in landscape mode, do one of the following
% 1.
% pdflatex latexsheet.tex
%
% 2.
% latex latexsheet.tex
% dvips -P pdf -t landscape latexsheet.dvi
% ps2pdf latexsheet.ps
% If you're reading this, be prepared for confusion. Making this was
% a learning experience for me, and it shows. Much of the placement
% was hacked in; if you make it better, let me know...
% This sets page margins to .5 inch if using letter paper, and to 1cm
% if using A4 paper. (This probably isn't strictly necessary.)
% If using another size paper, use default 1cm margins.
\ifthenelse{\lengthtest { \paperwidth = 11in}}
{ \geometry{top=.5in,left=.5in,right=.5in,bottom=.5in} }
{\ifthenelse{ \lengthtest{ \paperwidth = 297mm}}
{\geometry{top=1cm,left=1cm,right=1cm,bottom=1cm} }
{\geometry{top=1cm,left=1cm,right=1cm,bottom=1cm} }
}
% Turn off header and footer
\pagestyle{empty}
% Redefine section commands to use less space
\makeatletter
\renewcommand{\section}{\@startsection{section}{1}{0mm}%
{-1ex plus -.5ex minus -.2ex}%
{0.5ex plus .2ex}%x
{\normalfont\large\bfseries}}
\renewcommand{\subsection}{\@startsection{subsection}{2}{0mm}%
{-1explus -.5ex minus -.2ex}%
{0.5ex plus .2ex}%
{\normalfont\normalsize\bfseries}}
\renewcommand{\subsubsection}{\@startsection{subsubsection}{3}{0mm}%
{-1ex plus -.5ex minus -.2ex}%
{1ex plus .2ex}%
{\normalfont\small\bfseries}}
\makeatother
% Define BibTeX command
\def\BibTeX{{\rm B\kern-.05em{\sc i\kern-.025em b}\kern-.08em
T\kern-.1667em\lower.7ex\hbox{E}\kern-.125emX}}
% Don't print section numbers
\setcounter{secnumdepth}{0}
\setlength{\parindent}{0pt}
\setlength{\parskip}{0pt plus 0.5ex}
% Really wide hats
\stackMath
\newcommand\reallywidehat[1]{%
\savestack{\tmpbox}{\stretchto{%
\scaleto{%
\scalerel*[\widthof{\ensuremath{#1}}]{\kern-.6pt\bigwedge\kern-.6pt}%
{\rule[-\textheight/2]{1ex}{\textheight}}%WIDTH-LIMITED BIG WEDGE
}{\textheight}%
}{0.5ex}}%
\stackon[1pt]{#1}{\tmpbox}%
}
% -----------------------------------------------------------------------
\begin{document}
\raggedright
\footnotesize
\begin{multicols}{3}
% multicol parameters
% These lengths are set only within the two main columns
%\setlength{\columnseprule}{0.25pt}
\setlength{\premulticols}{1pt}
\setlength{\postmulticols}{1pt}
\setlength{\multicolsep}{1pt}
\setlength{\columnsep}{2pt}
\begin{center}
{\Large{\textbf{Econometrics Cheat Sheet}}} \\
{\footnotesize by Tyler Ransom, University of Oklahoma}
{\footnotesize \href{https://www.twitter.com/tyleransom}{\makeatletter @tyleransom \makeatother}}
\end{center}
\section{Data \& Causality}
Basics about data types and causality.
\subsection{Types of data}
\newlength{\MyLen}
\settowidth{\MyLen}{\texttt{letterpaper}/\texttt{a4paper} \ }
\begin{tabular}{@{}p{\the\MyLen}%
@{}p{\linewidth-\the\MyLen}@{}}
Experimental & Data from randomized experiment \\
Observational & Data collected passively \\
Cross-sectional & Multiple units, one point in time \\
Time series & Single unit, multiple points in time \\
Longitudinal (or Panel) & Multiple units followed over multiple time periods \\
\end{tabular}
\textbf{Experimental data}
\begin{itemize}
\item Correlation $\implies$ Causality
\item Very rare in Social Sciences
\end{itemize}
\section{Statistics basics}
We examine a \textbf{random sample} of data to learn about the population
\medskip{}
\begin{tabular}{@{}p{\the\MyLen}%
@{}p{\linewidth-\the\MyLen}@{}}
Random sample & Representative of population \\
Parameter $(\theta)$ & Some number describing population \\
Estimator of $\theta$ & Rule assigning value of $\theta$ to sample \\
& e.g. Sample average, $\overline{Y} = \frac{1}{N}\sum_{i=1}^{N} Y_{i}$ \\
Estimate of $\theta$ & What the estimator spits out \par
for a particular sample $(\hat{\theta})$ \\
Sampling distribution & Distribution of estimates \par
across all possible samples \\
Bias of estimator $W$ & $E\left(W\right)-\theta$ \\
Efficiency & $W$ efficient if $Var(W)<Var(\widetilde{W})$ \\
Consistency & $W$ consistent if $\hat{\theta}\rightarrow\theta$ as $N\rightarrow\infty$ \\
\end{tabular}
\subsection{Hypothesis testing}
The way we answer yes/no questions about our population using a sample of data. e.g. ``Does increasing public school spending increase student achievement?''
\medskip{}
\begin{tabular}{@{}p{\the\MyLen}%
@{}p{\linewidth-\the\MyLen}@{}}
null hypothesis $(H_0)$ & Typically, $H_0: \theta=0$ \\
alt. hypothesis $(H_a)$ & Typically, $H_0: \theta\neq 0$ \\
significance level $(\alpha)$ & Tolerance for making Type I error; \par (e.g. 10\%, 5\%, or 1\%)\\
test statistic $(T)$ & Some function of the sample of data \\
critical value $(c)$ & Value of $T$ such that reject $H_0$ if $\vert T \vert > c$; \par $c$ depends on $\alpha$; \par $c$ depends on if 1- or 2-sided test\\
$p$-value & Largest $\alpha$ at which fail to reject $H_0$; \par reject $H_0$ if $p<\alpha$ \\
\end{tabular}
% \medskip{}
% \begin{align*}
% t = & \frac{\text{estimate} - \text{null}}{\text{std. err.}} \\
% \end{align*}
\section{Simple Regression Model}
Regression is useful because we can estimate a \textit{ceteris paribus} relationship between some variable $x$ and our outcome $y$
\begin{align*}
y=\beta_{0}+\beta_{1}x+u
\end{align*}
We want to estimate $\hat{\beta}_1$, which gives us the effect of $x$ on $y$.
\subsection{OLS formulas}
To estimate $\hat{\beta}_0$ and $\hat{\beta}_1$, we make two assumptions:
\begin{enumerate}
\item $E\left(u\right) = 0$
\item $E\left(u\vert x\right) = E\left(u\right)$ for all $x$
\end{enumerate}
When these hold, we get the following formulas:
\begin{align*}
\hat{\beta}_{0}&=\overline{y}-\hat{\beta}_{1}\overline{x} \\
\hat{\beta}_{1}&=\frac{\reallywidehat{Cov}\left(y,x\right)}{\reallywidehat{Var}\left(x\right)}
\end{align*}
\begin{tabular}{@{}p{\the\MyLen}%
@{}p{\linewidth-\the\MyLen}@{}}
fitted values $(\hat{y}_i)$ & $\hat{y}_{i} = \hat{\beta}_0 + \hat{\beta}_1 x_{i}$ \\
residuals $(\hat{u}_i)$ & $\hat{u}_{i} = y_{i} - \hat{y}_i$ \\
Total Sum of Squares & $SST=\sum_{i=1}^{N}(y_{i}-\overline{y})^{2}$ \\
Expl. Sum of Squares & $SSE =\sum_{i=1}^{N}(\hat{y}_{i}-\overline{y})^{2}$\\
Resid. Sum of Squares & $SSR =\sum_{i=1}^{N}\hat{u}_{i}^{2}$\\
$R$-squared ($R^2$) & $R^{2}=\frac{SSE}{SST}$; \par ``frac. of var. in $y$ explained by $x$''\\
\end{tabular}
\subsection{Algebraic properties of OLS estimates}
\begin{enumerate}
\item[] $\sum_{i=1}^{N}\hat{u}_{i}=0$ (mean \& sum of residuals is zero)
\item[] $\sum_{i=1}^{N}x_{i}\hat{u}_{i}=0$ (zero covariance bet. $x$ and resids.)
\item[] The OLS line (SRF) always passes through $\left(\overline{x},\overline{y}\right)$
\item[] $SSE + SSR = SST$
\item[] $0 \leq R^2 \leq 1$
\end{enumerate}
\subsection{Interpretation and functional form}
\begin{itemize}
\item[] Our model is restricted to be \textbf{linear in parameters}
\item[] But not linear in $x$
\item[] Other functional forms can give more realistic model
\end{itemize}
\begin{center}
\begin{threeparttable}
\begin{tabular}{@{}l@{}c@{}c@{}l@{}}
\toprule
Model & DV & RHS & Interpretation of $\beta_1$ \\ \midrule
Level-level & $y$ & $x$ & $\phantom{\%}\Delta y = \beta_1 \Delta x$ \\
Level-log & $y$ & $\phantom{\%}\log(x)\phantom{\%}$ & $\phantom{\%}\Delta y \approx \left(\beta_1 / 100\right)\left[1\%\Delta x\right]\phantom{\%}$ \\
Log-level & $\phantom{\%}\log(y)\phantom{\%}$ & $x$ & $\%\Delta y \approx \left(100\beta_1\right)\Delta x$ \\
Log-log & $\log(y)$ & $\log(x)$ & $\%\Delta y \approx \beta_1 \%\Delta x$ \\
Quadratic & $y$ & $x+x^2$ & $\phantom{\%}\Delta y = \left(\beta_1+2\beta_2 x\right)\Delta x$ \\ \bottomrule
\end{tabular}
\scriptsize Note: $\text{DV }=\text{ dependent variable}$; $\text{RHS }=\text{ right hand side}$
\end{threeparttable}
\end{center}
\section{Multiple Regression Model}
Multiple regression is more useful than simple regression because we can more plausibly estimate \textit{ceteris paribus} relationships (i.e. $E\left(u\vert x\right) = E\left(u\right)$ is more plausible)
\begin{align*}
y=\beta_{0}+\beta_{1}x_1+\cdots+\beta_{k}x_k+u
\end{align*}
$\hat{\beta}_1,\ldots,\hat{\beta}_k$: \textbf{partial effect} of each of the $x$'s on $y$
\begin{align*}
\hat{\beta}_{0}&=\overline{y}-\hat{\beta}_{1}\overline{x}_1-\cdots-\hat{\beta}_{k}\overline{x}_k \\
\hat{\beta}_{j}&=\frac{\reallywidehat{Cov}\left(y,\text{residualized }x_{j}\right)}{\reallywidehat{Var}\left(\text{residualized }x_{j}\right)}
\end{align*}
where ``residualized $x_j$'' means the residuals from OLS regression of $x_j$ on all other $x$'s (i.e. $x_1, \ldots, x_{j-1}, x_{j+1}, \ldots x_k$)
\subsection{Gauss-Markov Assumptions}
\begin{enumerate}
\item $y$ is a linear function of the $\beta$'s
\item $y$ and $x$'s are randomly sampled from population
\item No perfect multicollinearity
\item $E\left(u\vert x_1, \ldots, x_k\right) = E\left(u\right) = 0$ (Unconfoundedness)
\item $Var\left(u\vert x_1, \ldots, x_k\right) = Var\left(u\right) = \sigma^2$ (Homoskedasticity)
\end{enumerate}
\begin{tabular}{@{}p{\the\MyLen}%
@{}p{\linewidth-\the\MyLen}@{}}
When (1)-(4) hold: & OLS is unbiased; i.e. $E(\hat{\beta}_j) = \beta_j$ \\
When (1)-(5) hold: & OLS is Best Linear Unbiased Estimator \\
\end{tabular}
\subsection{Variance of $u$ (a.k.a. ``error variance'')}
\begin{align*}
\hat{\sigma}^2 &= \frac{SSR}{N-K-1} \\
&= \frac{1}{N-K-1}\sum_{i=1}^N \hat{u}_i^2
\end{align*}
\subsection{Variance and Standard Error of $\hat{\beta}_j$}
\begin{equation*}
Var(\hat{\beta}_{j})=\frac{\sigma ^{2}}{SST_{j}(1-R_{j}^{2})}\text{, }%
j=1,2,...,k
\end{equation*}
where
\begin{align*}
SST_{j}&=(N-1)Var(x_j) = \sum_{i=1}^N (x_{ij} - \overline{x}_j)\\
R_{j}^{2} &= R^2 \text{ from a regression of } x_j \text{ on all other } x \text{'s}
\end{align*}
\begin{tabular}{@{}p{\the\MyLen}%
@{}p{\linewidth-\the\MyLen}@{}}
Standard deviation: & $\sqrt{Var}$ \\
Standard error: & $\sqrt{\reallywidehat{Var}}$ \\
\end{tabular}
\begin{equation*}
se(\hat{\beta}_{j})=\sqrt{\frac{\hat{\sigma} ^{2}}{SST_{j}(1-R_{j}^{2})}}, j=1,\ldots,k
\end{equation*}
\subsection{Classical Linear Model (CLM)}
Add a 6th assumption to Gauss-Markov:
\begin{enumerate}
\setcounter{enumi}{5}
\item $u$ is distributed $N\left(0,\sigma^2\right)$
\end{enumerate}
Need this to know what the exact \textit{distribution} of $\hat{\beta}_j$ is
\begin{itemize}
\item If A(6) fails, need \textbf{asymptotics} to test $\beta$'s
\item Then, interpret distr. of $\hat{\beta}_j$ as asymptotic (not exact)
\end{itemize}
\section{Testing Hypotheses about the $\beta$'s}
\begin{itemize}
\item Under A (1)--(6), can test hypotheses about the $\beta$'s
\item Or, (much more plausible) A (1)--(5) $+$ asymptotics
\end{itemize}
\subsection{$t$-test for simple hypotheses}
To test a simple hypothesis like
\begin{align*}
H_0&:\beta_j = 0\\
H_a&: \beta_j \neq 0
\end{align*}
use a $t$-test:
\begin{align*}
t&=\frac{\hat{\beta}_j-0}{se\left(\hat{\beta}_j\right)}
\end{align*}
where $0$ is the null hypothesized value.
\medskip{}
Reject $H_0$ if $p<\alpha$ or if $\vert t \vert > c$ (See: Hypothesis testing)
\subsection{$F$-test for joint hypotheses}
Can't use a $t$-test for joint hypotheses, e.g.:
\begin{align*}
H_{0}&:\beta _{3}=0\text{, }\beta _{4}=0\text{, }\beta _{5}=0\\
H_{a}&:\beta _{3}\neq0\text{ OR }\beta _{4}\neq0\text{ OR }\beta _{5}\neq0
\end{align*}
Instead, use $F$ statistic:
\begin{align*}
F=\frac{(SSR_{r}-SSR_{ur})/(df_{r}-df_{ur})}{SSR_{ur}/df_{ur}}=\frac{(SSR_{r}-SSR_{ur})/q}{SSR_{ur}/(N-k-1)}
\end{align*}
where
\begin{align*}
SSR_r &= SSR \text{ of restricted model (if }H_0\text{ true)} \\
SSR_{ur} &= SSR \text{ of unrestricted model (if }H_0\text{ false)} \\
q &= \text{\# of equalities in }H_0 \\
N-k-1 &= \text{Deg. Freedom of unrestricted model} \\
\end{align*}
Reject $H_0$ if $p<\alpha$ or if $F > c$ (See: Hypothesis testing)
\medskip{}
Note: $F>0$, always
\section{Qualitative data}
\begin{itemize}
\item Can use qualitative data in our model
\item Must create a \textbf{dummy variable}
\item e.g. ``Yes'' represented by 1 and ``No'' by 0
\end{itemize}
\textbf{dummy variable trap:} Perfect collinearity that happens when too many dummy variables are included in the model
\begin{align*}
y &= \beta_0 + \beta_1 happy + \beta_2 not\_happy + u
\end{align*}
The above equation suffers from the dummy variable trap because units can only be ``happy'' or ``not happy,'' so including both would result in perfect collinearity with the intercept
\subsection{Interpretation of dummy variables}
Interpretation of dummy variable coefficients is always relative to the excluded category (e.g. $not\_happy$):
\begin{align*}
y &= \beta_0 + \beta_1 happy + \beta_2 age + u
\end{align*}
\begin{itemize}
\item[$\beta_1$:] avg. $y$ for those who are happy \textit{compared to} those who are unhappy, holding fixed age
\end{itemize}
\subsection{Interaction terms}
\textbf{interaction term:} When two $x$'s are multiplied together
\begin{align*}
y &= \beta_0 + \beta_1 happy + \beta_2 age + \beta_3 happy \times age + u
\end{align*}
\begin{itemize}
\item[$\beta_3$:] difference in $age$ \textbf{slope} for those who are happy \textit{compared to} those who are unhappy
\end{itemize}
\subsection{Linear Probability Model (LPM)}
When $y$ is a dummy variable, e.g.
\begin{align*}
happy &= \beta_0 + \beta_1 age + \beta_2 income + u
\end{align*}
$\beta$'s are interpreted as \textit{change in probability}:
\begin{align*}
\Delta\Pr(y=1) = \beta_1\Delta x
\end{align*}
By definition, homoskedasticity is violated in the LPM
\section{Time Series (TS) data}
\begin{itemize}
\item Observe one unit over many time periods
\item e.g. US quarterly GDP, 3-month T-bill rate, etc.
\item New G-M assumption: no serial correlation in $u_t$
\item Remove random sampling assumption (makes no sense)
\end{itemize}
\subsection{Two focuses of TS data}
\begin{enumerate}
\item Causality (e.g. $\uparrow$ taxes $\overset{?}{\implies}$ $\downarrow$ GDP growth)
\item Forecasting (e.g. AAPL stock price next quarter?)
\end{enumerate}
\subsection{Requirements for TS data}
To properly use TS data for causal inf / forecasting,\\need data free of the following elements:
\medskip{}
\begin{tabular}{@{}p{\the\MyLen}%
@{}p{\linewidth-\the\MyLen}@{}}
Trends: & $y$ always $\uparrow$ or $\downarrow$ every period \\
Seasonality: & $y$ always $\uparrow$ or $\downarrow$ at regular intervals \\
Non-stationarity: & $y$ has a unit root; i.e. not stable \\
\end{tabular}
Otherwise, $R^2$ and $\hat{\beta}_{j}$'s are misleading
\subsection{$AR(1)$ and Unit Root Processes}
$AR(1)$ model (Auto Regressive of order 1):
\begin{align*}
y_t = \rho y_{t-1} + u_{t}
\end{align*}
Stable if $\vert\rho\vert<1$; Unit Root if $\vert\rho\vert\geq 1$
``Non-stationary,'' ``Unit Root,'' ``Integrated'' are all synonymous
\subsubsection{Correcting for Non-stationarity}
Easiest way is to take a first difference:
\medskip{}
\begin{tabular}{@{}p{\the\MyLen}%
@{}p{\linewidth-\the\MyLen}@{}}
First difference: & Use $\Delta y = y_{t}-y_{t-1}$ instead of $y_t$ \\
Test for unit root: & Augmented Dickey-Fuller (ADF) test \\
$H_0$ of ADF test: & $y$ has a unit root \\
\end{tabular}
\subsection{TS Forecasting}
A good forecast minimizes \textbf{forecasting error} $\hat{f}_t$:
\begin{align*}
\min_{f_t} E\left(e_{t+1}^{2}\vert I_t\right) = E\left[\left(y_{t+1}-f_t\right)^{2}\vert I_t\right]
\end{align*}
where $I_t$ is the \textbf{information set}
% \medskip{}
% Want a model that predicts the future as correctly as possible
\medskip{}
RMSE measures forecast performance (on future data):
\begin{align*}
\text{Root Mean Squared Error} = \sqrt{\frac{1}{m}\sum_{h=0}^{m-1} \hat{e}^2_{T+h+1} }
\end{align*}
\medskip{}
Model with lowest RMSE is best forecast
\begin{itemize}
\item Can choose $f_{t}$ in many ways
\item Basic way: $\hat{y}_{T+1}$ from linear model
\item ARIMA, ARMA-GARCH are cutting-edge models
\end{itemize}
\subsubsection{Granger causality}
$z$ \textbf{Granger causes} $y$ if, after controlling for past values of $y$, past values of $z$ help forecast $y_t$
\section{CLM violations}
\subsubsection{Heteroskedasticity}
\begin{itemize}
\item Test: Breusch-Pagan or White tests ($H_0:$ homosk.)
\item If $H_0$ rejected, SEs, t-, and F-stats are invalid
\item Instead use heterosk.-robust SEs and t- and F-stats
\end{itemize}
\subsubsection{Serial correlation}
\begin{itemize}
\item Test: Breusch-Godfrey test ($H_0:$ no serial corr.)
\item If $H_0$ rejected, SEs, t-, and F-stats are invalid
\item Instead use HAC SEs and t- and F-stats
\item HAC: ``Heterosk. and Autocorrelation Consistent''
\end{itemize}
\subsubsection{Measurement error}
\begin{itemize}
\item Measurement error in $x$ can be a violation of A4
\item \textbf{Attenuation bias:} $\beta_j$ biased towards 0
\end{itemize}
\subsubsection{Omitted Variable Bias}
When an important $x$ is excluded: \textbf{omitted variable bias}.
\medskip{}
Bias depends on two forces:
\begin{enumerate}
\item Partial effect of $x_2$ on $y$ (i.e. $\beta_2$)
\item Correlation between $x_2$ and $x_1$
\end{enumerate}
Which direction does the bias go?
\begin{center}
\begin{threeparttable}
\begin{tabular}{@{}l@{}l@{}l@{}}
\toprule
& $Corr(x_{1},x_{2})>0$\phantom{\%\%\%} & $Corr(x_{1},x_{2})<0$\phantom{\%\%\%} \\ \midrule
$\beta _{2}>0$\phantom{\%\%\%} & Positive Bias & Negative Bias \\
$\beta _{2}<0$ & Negative Bias & Positive Bias \\ \bottomrule
\end{tabular}
\footnotesize Note: ``Positive bias'' means $\beta_1$ is too big; \par
``Negative bias'' means $\beta_1$ is too small
\end{threeparttable}
\end{center}
\subsection{How to resolve $E\left(u\vert\mathbf{x}\right)\neq 0$}
How can we get unbiased $\hat{\beta}_j$'s when $E\left(u\vert\mathbf{x}\right)\neq 0$?
\medskip{}
\begin{itemize}
\item Include lagged $y$ as a regressor
\item Include proxy variables for omitted ones
\item Use instrumental variables
\item Use a natural experiment (e.g. diff-in-diff)
\item Use panel data
\end{itemize}
\subsubsection{Instrumental Variables (IV)}
A variable $z$, called the instrument, satisfies:
\medskip{}
\begin{enumerate}
\item $cov\left(z,u\right) = 0$ (\textbf{not} testable)
\item $cov\left(z,x\right) \neq 0$ (testable)
\end{enumerate}
\medskip{}
$z$ typically comes from a \textbf{natural experiment}
\begin{align*}
\hat{\beta}_{IV} = \frac{cov\left(z,y\right)}{cov\left(z,x\right)}
\end{align*}
\begin{itemize}
\item SE's much larger when using IV compared to OLS
\item Be aware of \textbf{weak instruments}
\end{itemize}
\textbf{When there are multiple instruments:}
\begin{itemize}
\item use Two-stage least squares (2SLS)
\item exclude at least as many $z$'s as endogenous $x$'s
\item[1st stage:] regress endogenous $x$ on $z$'s and exogenous $x$'s
\item[2nd stage:] regress $y$ on $\hat{x}$ and exogenous $x$'s
\end{itemize}
\textbf{Test for weak instruments:} Instrument is weak if
\begin{itemize}
\item 1st stage $F$ stat $< 10$
\item or 1st stage $\vert t \vert < \sqrt{10}\approx 3.2$
\end{itemize}
\subsubsection{Difference in Differences (DiD)}
Can get causal effects from \textbf{pooled cross sectional data}
\medskip{}
A nat. experiment divides units into treatment, control groups
\begin{align*}
y_{it} = \beta_0 + \delta_0 d2_t + \beta_1 dT_{it} + \delta_1 d2_{t}\times dT_{it} + u_{it}
\end{align*}
where
\begin{itemize}
\item $d2_t=$ dummy for being in time period 2
\item $dT_{it}=$ dummy for being in the treatment group
\item $\hat{\delta}_1=$ \textbf{difference in differences}
\end{itemize}
\begin{align*}
\hat{\delta}_1 = \left(\overline{y}_{treat,2}-\overline{y}_{control,2}\right) - \left(\overline{y}_{treat,1}-\overline{y}_{control,1}\right)
\end{align*}
\medskip{}
\textbf{Extensions:}
\begin{itemize}
\item Can also include $x$'s in the model
\item Can also use with more than 2 time periods
\item $\hat{\delta}_1$ has same interpretation, different math formula
\end{itemize}
\medskip{}
\textbf{Validity:}
\begin{itemize}
\item Need $y$ changing across time and treatment for reasons only due to the policy
\item a.k.a. \textbf{parallel trends assumption}
\end{itemize}
\subsubsection{Panel data}
Follow same sample of units over multiple time periods
\begin{align*}
y_{it} = \beta_0 + \beta_1 x_{it1} + \cdots + \beta_k x_{itk} + \underbrace{a_i + u_{it}}_{\nu_{it}}
\end{align*}
\begin{itemize}
\item $\nu_{it}=$ \textbf{composite error}
\item $a_i=$ unit-specific unobservables
\item $u_{it}=$ idiosyncratic error
\item Allow $E\left(a\vert\mathbf{x}\right)\neq 0$
\item Maintain $E\left(u\vert\mathbf{x}\right)= 0$
\end{itemize}
\medskip{}
Four different methods of estimating $\beta_j$'s:
\begin{enumerate}
\item Pooled OLS (i.e. ignore composite error)
\item First differences (FD):
\begin{align*}
\Delta y_{i} = \beta_1 \Delta x_{i1} + \cdots + \Delta \beta_k x_{ik} + \Delta u_{i}
\end{align*}
estimated via Pooled OLS on transformed data
\item Fixed effects (FE):
\begin{align*}
y_{it}-\overline{y}_{i} &= \beta_1 \left(x_{it1}-\overline{x}_{i1}\right) + \cdots \\
&+\beta_k \left( x_{itk}-\overline{x}_{ik}\right) + \left(u_{it}-\overline{u}_{i}\right)
\end{align*}
estimated via Pooled OLS on transformed data
\item Random effects (RE):
\begin{align*}
y_{it}-\theta\overline{y}_{i} &= \beta_0 \left(1-\theta\right) + \beta_1 \left(x_{it1}-\theta\overline{x}_{i1}\right) + \cdots \\
&+\beta_k \left( x_{itk}-\theta\overline{x}_{ik}\right) + \left(\nu_{it}-\theta\overline{\nu}_{i}\right)
\end{align*}
estimated via FGLS, where
\begin{align*}
\theta &= 1-\sqrt{\frac{\sigma^2_u}{\sigma^2_u + T\sigma^2_a}} \\
\hat{\beta}_{RE} \rightarrow \hat{\beta}_{FE} & \text{ as } \theta \rightarrow 1 \\
\hat{\beta}_{RE} \rightarrow \hat{\beta}_{POLS} & \text{ as } \theta \rightarrow 0 \\
\end{align*}
\textbf{RE assumes $E\left(a\vert\mathbf{x}\right)= 0$}
\end{enumerate}
\paragraph{Cluster-robust SEs}
\begin{itemize}
\item Serial correlation of $\nu_{it}$ is a problem
\item Use \textbf{cluster-robust} SEs
\item These correct for serial corr. and heterosk.
\item Cluster at the unit level
\end{itemize}
\section{Binary dependent variables}
Three options for estimation when $y$ is binary (0/1):
\begin{itemize}
\item Linear Probability Model
\item Logit
\item Probit
\end{itemize}
Latter two are \textit{nonlinear} models:
\begin{align*}
P\left(y=1\,\vert\,\mathbf{x}\right)&=G\left(\beta _{0}+\beta_{1}x_{1}+\beta_{2}x_{2}\right)
\end{align*}
where $G\left(\cdot\right)$ is some nonlinear function satisfying $0<G\left(\cdot\right)<1$
\subsection{Trade-offs with logit/probit}
\textbf{Disadvantages}
\begin{itemize}
\item Now it's much harder to estimate and interpret $\beta$'s!
\item Can no longer use OLS; instead use maximum likelihood
\item Nonlinear $G\left(\cdot\right)\implies$
\begin{itemize}
\item Must use chain rule to compute slope
\item Slope of tangent line depends on $\mathbf{x}$!
\end{itemize}
\end{itemize}
\textbf{Main advantage}
\begin{itemize}
\item Now $0 < \widehat{y} < 1 \implies$ more realistic
\item (Recall: in LPM, possible to have negative probabilities)
\end{itemize}
\subsection{Common choices for $G\left(\cdot\right)$}
\textbf{Logit model:}
\begin{align*}
G\left(\mathbf{x}\beta\right)&=\frac{\exp\left(\mathbf{x}\beta\right)}{1+\exp\left(\mathbf{x}\beta\right)}=\Lambda\left(\mathbf{x}\beta\right)
\end{align*}
\textbf{Probit model:}
\begin{align*}
G\left(\mathbf{x}\beta\right)&= \int_{-\infty}^{\mathbf{x}\beta}\phi\left(z\right)dz =\Phi\left(\mathbf{x}\beta\right)
\end{align*}
where $\phi\left(\cdot\right)$ is the standard normal pdf
\subsection{Interpreting logit/probit parameter estimates}
\begin{itemize}
\item $\beta$'s that come from logit/probit $\neq$ $\beta$'s from LPM
\item But, \textit{sign} is same
\item In logit/probit, we have
\begin{align*}
\frac{\partial p\left(\mathbf{x}\right)}{\partial x_{j}}=\beta _{j}g\left(\mathbf{x}\beta\right)
\end{align*}
where $g\left(\mathbf{x}\beta\right)$ is the first derivative of $G\left(\mathbf{x}\beta\right)$
\item In LPM, we have $\frac{\partial p\left(\mathbf{x}\right)}{\partial x_{j}}=\beta _{j}$
% \begin{align*}
% \frac{\partial p\left(\mathbf{x}\right)}{\partial x_{j}}=\beta _{j}
% \end{align*}
\end{itemize}
% \textcolor{white}{\lipsum[1-3]}
\rule{0.3\linewidth}{0.25pt}
\scriptsize
Layout by Winston Chang, \href{http://wch.github.io/latexsheet/}{http://wch.github.io/latexsheet/}
\end{multicols}
\end{document}