-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy patheval_ldm.py
186 lines (158 loc) · 7.08 KB
/
eval_ldm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
from tools.fid_score import calculate_fid_given_paths
import ml_collections
import torch
from torch import multiprocessing as mp
import accelerate
import utils
import sde
from uvit_datasets import get_dataset
import tempfile
from dpm_solver_pytorch import NoiseScheduleVP, model_wrapper, DPM_Solver
from absl import logging
import builtins
import libs.autoencoder
from mamba_attn_diff.models.upsample_guidance import make_ufg_nnet
def evaluate(config):
if config.get('benchmark', False):
torch.backends.cudnn.benchmark = True
torch.backends.cudnn.deterministic = False
mp.set_start_method('spawn')
accelerator = accelerate.Accelerator()
device = accelerator.device
accelerate.utils.set_seed(config.seed, device_specific=True)
logging.info(f'Process {accelerator.process_index} using device: {device}')
config.mixed_precision = accelerator.mixed_precision
config = ml_collections.FrozenConfigDict(config)
if accelerator.is_main_process:
utils.set_logger(log_level='info', fname=config.output_path)
else:
utils.set_logger(log_level='error')
builtins.print = lambda *args: None
dataset = get_dataset(**config.dataset)
nnet = utils.get_nnet(**config.nnet)
nnet = accelerator.prepare(nnet)
logging.info(f'load nnet from {config.nnet_path}')
accelerator.unwrap_model(nnet).load_state_dict(torch.load(config.nnet_path, map_location='cpu'))
nnet.eval()
autoencoder = libs.autoencoder.get_model(config.autoencoder.pretrained_path)
autoencoder.to(device)
@torch.cuda.amp.autocast()
def encode(_batch):
return autoencoder.encode(_batch)
@torch.cuda.amp.autocast()
def decode(_batch):
return autoencoder.decode(_batch)
def decode_large_batch(_batch):
decode_mini_batch_size = 50 # use a small batch size since the decoder is large
xs = []
pt = 0
for _decode_mini_batch_size in utils.amortize(_batch.size(0), decode_mini_batch_size):
x = decode(_batch[pt: pt + _decode_mini_batch_size])
pt += _decode_mini_batch_size
xs.append(x)
xs = torch.concat(xs, dim=0)
assert xs.size(0) == _batch.size(0)
return xs
def cfg_nnet(x, timestep, y, **kwargs):
_cond = nnet(x, timestep, y=y, **kwargs)
_uncond = nnet(x, timestep, y=torch.tensor([dataset.K] * x.size(0), device=device), **kwargs)
_cond = _cond.sample if not isinstance(_cond, torch.Tensor) else _cond
_uncond = _uncond.sample if not isinstance(_uncond, torch.Tensor) else _uncond
return _cond + config.sample.scale * (_cond - _uncond)
def uncfg_nnet(x, timestep, y=None, **kwargs):
_uncfg = nnet(x, timestep, **kwargs)
_uncfg = _uncfg.sample if not isinstance(_uncfg, torch.Tensor) else _uncfg
return _uncfg
if 'cfg' in config.sample and config.sample.cfg and config.sample.scale > 0: # classifier free guidance
logging.info(f'Use classifier free guidance with scale={config.sample.scale}')
score_model = sde.ScoreModel(cfg_nnet, pred=config.pred, sde=sde.VPSDE()) #
else:
score_model = sde.ScoreModel(uncfg_nnet, pred=config.pred, sde=sde.VPSDE())
logging.info(config.sample)
assert os.path.exists(dataset.fid_stat)
logging.info(f'sample: n_samples={config.sample.n_samples}, mode={config.train.mode}, mixed_precision={config.mixed_precision}')
def sample_fn(_n_samples):
if config.sample.algorithm == 'dpm_solver_upsample_g':
m = 2
data_shape = tuple([config.z_shape[0]] + [ int(i*m) for i in config.z_shape[1:] ]) # config.z_shape[1:]
_z_init = torch.randn(_n_samples, *data_shape, device=device)
else:
_z_init = torch.randn(_n_samples, *config.z_shape, device=device)
if config.train.mode == 'uncond':
kwargs = dict()
elif config.train.mode == 'cond':
kwargs = dict(y=dataset.sample_label(_n_samples, device=device))
else:
raise NotImplementedError
if config.sample.algorithm == 'euler_maruyama_sde':
_z = sde.euler_maruyama(sde.ReverseSDE(score_model), _z_init, config.sample.sample_steps, verbose=accelerator.is_main_process, **kwargs)
elif config.sample.algorithm == 'euler_maruyama_ode':
_z = sde.euler_maruyama(sde.ODE(score_model), _z_init, config.sample.sample_steps, verbose=accelerator.is_main_process, **kwargs)
elif config.sample.algorithm == 'dpm_solver_upsample_g':
noise_schedule = NoiseScheduleVP(schedule='linear')
sde_entity = sde.VPSDE()
normed_timesteps = torch.arange(1000, dtype=_z_init.dtype, device=device).flip(0) / 999
normed_timesteps[-1] = 1e-5
model_fn = make_ufg_nnet(
cfg_nnet,
uncfg_nnet,
normed_timesteps,
sde_entity.cum_alpha,
sde_entity.cum_beta,
sde_entity.snr,
m=m,
**kwargs,
)
dpm_solver = DPM_Solver(model_fn, noise_schedule)
_z = dpm_solver.sample(
_z_init,
steps=config.sample.sample_steps,
eps=1e-4,
adaptive_step_size=False,
fast_version=True,
)
elif config.sample.algorithm == 'dpm_solver':
noise_schedule = NoiseScheduleVP(schedule='linear')
model_fn = model_wrapper(
score_model.noise_pred, #
noise_schedule,
time_input_type='0',
model_kwargs=kwargs
)
dpm_solver = DPM_Solver(model_fn, noise_schedule)
_z = dpm_solver.sample(
_z_init,
steps=config.sample.sample_steps,
eps=1e-4,
adaptive_step_size=False,
fast_version=True,
)
else:
raise NotImplementedError
return decode_large_batch(_z)
with tempfile.TemporaryDirectory() as temp_path:
path = config.sample.path or temp_path
if accelerator.is_main_process:
os.makedirs(path, exist_ok=True)
logging.info(f'Samples are saved in {path}')
utils.sample2dir(accelerator, path, config.sample.n_samples, config.sample.mini_batch_size, sample_fn, dataset.unpreprocess)
if accelerator.is_main_process:
fid = calculate_fid_given_paths((dataset.fid_stat, path))
logging.info(f'nnet_path={config.nnet_path}, fid={fid}')
from absl import flags
from absl import app
from ml_collections import config_flags
import os
FLAGS = flags.FLAGS
config_flags.DEFINE_config_file(
"config", None, "Training configuration.", lock_config=False)
flags.mark_flags_as_required(["config"])
flags.DEFINE_string("nnet_path", None, "The nnet to evaluate.")
flags.DEFINE_string("output_path", None, "The path to output log.")
def main(argv):
config = FLAGS.config
config.nnet_path = FLAGS.nnet_path
config.output_path = FLAGS.output_path
evaluate(config)
if __name__ == "__main__":
app.run(main)