-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconfig.py
167 lines (149 loc) · 5.79 KB
/
config.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
"""Configurations."""
import torch
import argparse
from pathlib import Path
def build_parser():
"""Get arguments from cmd."""
parser = argparse.ArgumentParser()
# Arguments related to Data.
parser.add_argument('--data',
type=str,
default='cifar10',
choices=['cifar10', 'cifar100', 'svhn', 'stl10'],
help="Dataset for experiments")
parser.add_argument('--num_classes',
type=int,
default=None,
help="Number of classes")
parser.add_argument('--num_X',
type=int,
default=250,
help="Number of labeled dataset")
parser.add_argument('--include_x_in_u',
default=False,
action='store_true',
help="Inlucde labeled data(X) in unlabeled data(U).")
parser.add_argument('--batch_size',
type=int,
default=64,
help="Batch size of X")
parser.add_argument('--mu',
type=float,
default=7,
help="Relative size of U")
parser.add_argument('--augs',
type=int,
nargs='+',
default=[1, 2],
help="augmentations (weak: 1, strong: 2)")
# Arguments related to Network.
parser.add_argument('--network',
type=str,
default='wrn_28_2',
choices=['squeezenet',
'efficientnet',
'convnext',
'mobilenet',
'shufflenet',
'wrn_28_2',
'wrn_28_8'],
help="Network architecture")
parser.add_argument('--ema_decay',
type=float,
default=0.999,
help="Exponential moving average of model weights")
# Arguments related to Optimization.
parser.add_argument('--lr',
type=float,
default=0.03,
help="learning rate")
parser.add_argument('--momentum',
type=float,
default=0.9,
help="momentum")
parser.add_argument('--weight_decay',
type=float,
default=0.0005,
help="weight decay")
parser.add_argument('--nesterov',
default=False,
action='store_true',
help="nesterov")
parser.add_argument('--iterations',
type=int,
default=2**20,
help="Number of training iterations.")
# Arguments related to FixMatch Algorithm.
parser.add_argument('--threshold',
type=float,
default=0.95,
help="threshold to generate artificial label")
parser.add_argument('--lu_weight',
type=float,
default=1.0,
help="unsupervised loss weight")
# Arguments related to Misc.
parser.add_argument('--save_path',
type=Path,
default='./model-store',
help="model save path")
parser.add_argument('--load_path',
type=Path,
help="model load path for 'resume' or 'eval'")
parser.add_argument('--print_interval',
type=int,
default=1000,
help="Print log step")
parser.add_argument('--amp',
default=False,
action='store_true',
help="amp usage flag")
parser.add_argument('--mode',
type=str,
default='train',
choices=['train', 'eval', 'resume'],
help="Runtime mode")
# Arguments related to wandb.
parser.add_argument('--wandb',
default=False,
action='store_true',
help="wandb usage flag")
parser.add_argument('--wb_project',
type=str,
default='FixMatch',
help="Project Name")
parser.add_argument('--wb_tags',
type=str,
nargs='+',
default=None,
help="Tags of this run")
return parser.parse_args()
def get_parameters():
"""Get parameters to run."""
args = build_parser()
args.save_path.mkdir(exist_ok=True)
if args.mode == 'resume':
mode = args.mode
load_path = args.load_path
ckpt = torch.load(load_path, map_location='cpu')
start_iter = ckpt['iteration']
args = ckpt['args']
args.mode = mode
args.load_path = load_path
args.iterations = max(args.iterations - start_iter, 0)
del ckpt
elif args.mode == 'eval':
mode = args.mode
load_path = args.load_path
ckpt = torch.load(args.load_path, map_location='cpu')
args = ckpt['args']
args.mode = mode
args.load_path = load_path
del ckpt
# dependent parameters
args.num_classes = 100 if args.data == 'cifar100' else 10
# print
print("#"*20 + f"\n{'Arguments':^20s}\n" + "#"*20)
for k, v in vars(args).items():
print(f"{k}: {v}")
return args