-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathvocab.py
99 lines (71 loc) · 3.53 KB
/
vocab.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
from __future__ import print_function
import argparse
from collections import Counter
from itertools import chain
import sys
class VocabEntry(object):
def __init__(self):
self.word2id = dict()
self.unk_id = 3
self.word2id['<pad>'] = 0
self.word2id['<s>'] = 1
self.word2id['</s>'] = 2
self.word2id['<unk>'] = 3
self.id2word = {v: k for k, v in self.word2id.items()}
def __getitem__(self, word):
return self.word2id.get(word, self.unk_id)
def __contains__(self, word):
return word in self.word2id
def __setitem__(self, key, value):
raise ValueError('vocabulary is readonly')
def __len__(self):
return len(self.word2id)
def __repr__(self):
return 'Vocabulary[size=%d]' % len(self)
def add(self, word):
if word not in self:
wid = self.word2id[word] = len(self)
self.id2word[wid] = word
return wid
else:
return self[word]
@staticmethod
def from_corpus(corpus, size, remove_singleton=True):
vocab_entry = VocabEntry()
word_freq = Counter(chain(*corpus))
non_singletons = [w for w in word_freq if word_freq[w] > 1]
print('number of word types: %d, number of word types w/ frequency > 1: %d' % (len(word_freq),
len(non_singletons)))
top_k_words = sorted(word_freq.keys(), reverse=True, key=word_freq.get)[:size]
for word in top_k_words:
if len(vocab_entry) < size:
if not (word_freq[word] == 1 and remove_singleton):
vocab_entry.add(word)
return vocab_entry
class Vocab(object):
def __init__(self, src_sents, tgt_sents, src_vocab_size, tgt_vocab_size, remove_singleton=True):
print('initialize source vocabulary ..')
self.src = VocabEntry.from_corpus(src_sents, src_vocab_size, remove_singleton=remove_singleton)
print('initialize target vocabulary ..')
self.tgt = VocabEntry.from_corpus(tgt_sents, tgt_vocab_size, remove_singleton=remove_singleton)
def __repr__(self):
return 'Vocab(source %d words, target %d words)' % (len(self.src), len(self.tgt))
if __name__ == '__main__':
import torch
from data_utils import LetsGoCorpus, read_corpus_vocab, LetsGoDataLoader, data_iter
parser = argparse.ArgumentParser()
parser.add_argument('--src_vocab_size', default=50000, type=int, help='source vocabulary size')
parser.add_argument('--tgt_vocab_size', default=50000, type=int, help='target vocabulary size')
parser.add_argument('--include_singleton', action='store_true', default=False, help='whether to include singleton'
'in the vocabulary (default=False)')
parser.add_argument('--output', default='./data/vocab.bin', type=str, help='output vocabulary file')
args = parser.parse_args()
#test()
corpus = LetsGoCorpus('./data/union_data-1ab.p')
train_src, train_tgt = corpus.get_train_sents()
src_sents = read_corpus_vocab(train_src, source='src')
tgt_sents = read_corpus_vocab(train_tgt, source='tgt')
vocab = Vocab(src_sents, tgt_sents, args.src_vocab_size, args.tgt_vocab_size, remove_singleton=not args.include_singleton)
print('generated vocabulary, source %d words, target %d words' % (len(vocab.src), len(vocab.tgt)))
torch.save(vocab, args.output)
print('vocabulary saved to %s' % args.output)