-
Notifications
You must be signed in to change notification settings - Fork 5
/
demo.py
100 lines (74 loc) · 5.25 KB
/
demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
# DEMO to run
from getter_functions import Getter
from interaction_handler import Interaction_Handler
import argparse
parser = argparse.ArgumentParser(description='Project: GAN Explorer.')
# python demo.py -h -> prints out help
parser.add_argument('-mode', help='Mode under which we run GAN Explorer ("explore" - explore the latent space and use techniques such as Convolutional Layer Reconnection / "listen" - OSC signal listener mode, audio-visual demo (see the readme)). Defaults to "explore".', default='explore')
parser.add_argument('-network', help='Path to the model (.pkl file) - this can be a pretrained ProgressiveGAN model, or just the Generator network (Gs).', default='models/karras2018iclr-lsun-car-256x256.pkl')
parser.add_argument('-architecture', help='GAN architecture type (support for "ProgressiveGAN"; work-in-progress also "StyleGAN2"). Defaults to "ProgressiveGAN".', default='ProgressiveGAN')
parser.add_argument('-steps_speed', help='Interpolation speed - steps_speed controls how many steps each transition between two samples will have (large number => smoother interpolation, slower run). Suggested 60 (mid-end) or 120 (high-end). Defaults to 60.', default='60')
parser.add_argument('-conv_reconnect_str', help='Strength of one Convolutional Layer Reconnection effect (0.3 defaults to 30 percent of the connections being reconnected in each click).', default='0.3')
parser.add_argument('-deploy', help='Optional mode to depend on a deployed run of the Server.py code (see python server.py -h for more).', default='False')
parser.add_argument('-port', help='Server runs on this port. Defaults to 8000 (this uses the link "http://localhost:"+PORT+"/get_image" for rest calls. Use SSH tunel.', default='8000')
parser.add_argument('-fullscreen', help='Start Fullscreen? ("full" - fullscreen, "resize" - resizeable window, otherwise fixed resolution 1024)', default='None')
parser.add_argument('-skip_intro', help='Directly into game?.', default='False')
if __name__ == '__main__':
args_main = parser.parse_args()
import mock
args = mock.Mock()
args.architecture = str(args_main.architecture)
import os
# if there is another model in the fixed path of networks/net.pkl, use that one instead:
if os.path.exists("networks/net.pkl"):
args.model_path = "networks/net.pkl"
else:
args.model_path = str(args_main.network)
#####################
# Local override
#args.model_path = "models/grayjungledwellers-008800.pkl"
steps_speed = int(args_main.steps_speed)
#version = "v0" # random
#version = "v0b" # random + interpolation
version = "v2" # "game"
mode = str(args_main.mode)
if mode == "explore":
version = "v2" # "game"
elif mode == "listen":
version = "v1" # OSC listener
server_deployed = (args_main.deploy == "True")
port = str(args_main.port) #port = "8000" # -> Uses a link for REST requests: "http://localhost:"+PORT+"/get_image"
getter = Getter(args, USE_SERVER_INSTEAD=server_deployed, PORT=port)
initial_resolution = 1024
fullscreen = str(args_main.fullscreen)
skip_intro = (args_main.skip_intro == "True")
interaction_handler = Interaction_Handler(getter, initial_resolution, fullscreen, start_in_autonomous_mode=skip_intro)
interaction_handler.convolutional_layer_reconnection_strength = float(args_main.conv_reconnect_str)
pretrained_model = ("karras2018iclr" in args.model_path)
if args.architecture == "ProgressiveGAN":
if not pretrained_model:
# << Pre-trained PGGAN models have tensors named as: "16x16/Conv0/weight" while our custom models have "16x16/Conv0_up/weight" -> probably due to the used tf versions
interaction_handler.target_tensors = [tensor.replace("Conv0", "Conv0_up") for tensor in interaction_handler.target_tensors]
interaction_handler.plotter.target_tensors = [tensor.replace("Conv0", "Conv0_up") for tensor in interaction_handler.plotter.target_tensors]
if "-256x256.pkl" in args.model_path:
interaction_handler.plotter.font_multiplier = 0.25
### StyleGAN2 layer naming is different:
if args.architecture == "StyleGAN2":
interaction_handler.target_tensors = ["G_synthesis/"+tensor.replace("Conv0", "Conv0_up") for tensor in interaction_handler.target_tensors]
interaction_handler.plotter.target_tensors = ["G_synthesis/"+tensor.replace("Conv0", "Conv0_up") for tensor in interaction_handler.plotter.target_tensors]
# plotter allowed only in local run
if not server_deployed:
interaction_handler.plotter.prepare_with_set_tensors()
interaction_handler.latent_vector_size = getter.get_vec_size_localServerSwitch()
if version == "v0":
interaction_handler.start_renderer_no_interaction()
elif version == "v0b":
interaction_handler.shuffle_random_points(steps=steps_speed)
interaction_handler.keep_p1 = True # << optional
interaction_handler.start_renderer_interpolation()
elif version == "v1":
interaction_handler.shuffle_random_points(steps=steps_speed)
interaction_handler.start_renderer_interpolation_interact()
elif version == "v2":
interaction_handler.shuffle_random_points(steps=steps_speed)
interaction_handler.start_renderer_key_interact(skip_intro=skip_intro)