-
Notifications
You must be signed in to change notification settings - Fork 1
/
eval_chat.py
316 lines (266 loc) · 13.7 KB
/
eval_chat.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
#!/usr/bin/env python
# coding=utf-8
# Copyright 2020 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Evaluate a model on a multilingual task for all languages"""
import logging
import os
import sys
import json
import re
import datasets
import numpy as np
from collections import defaultdict
from time import time, ctime
import transformers
from transformers import (
AutoModelForCausalLM,
AutoModelForSeq2SeqLM,
HfArgumentParser,
TrainingArguments,
set_seed
)
from huggingface_hub import login
from openicl import DatasetReader, PromptTemplate
from openicl.icl_retriever import ZeroRetriever, RandomRetriever, FlipRetriever, TopkRetriever
from openicl.icl_inferencer import LlamaInferencer
from openicl.icl_evaluator import SquadEvaluator, EMEvaluator, ChrfEvaluator
from arguments import DataTrainingArguments, ModelArguments, InContextLearningArguments, SUPPORTED_MODELS
from utils import load_config, get_predictions_from_file, load_multilingual_data
# Setup logging
logger = logging.getLogger(__name__)
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
handlers=[logging.StreamHandler(sys.stdout)]
)
def post_process(task_name, all_predictions) :
def _format(response) :
if "\n\n" in response and len(response.split("\n\n")) > 1 :
response = " ".join(response.split("\n\n")[1:]) # remove the greetings, e.g., "Sure, I can do that!\n\n xxx"
prefix = [
"Based on the passage,",
"Based on the given passage,",
"According to the passage",
"The answer is",
"Here is the answer to your question",
"Here's my answer"
"The answer to your question is",
""
]
for pre in prefix :
for p in [pre, pre.lower()]:
response = response.replace(p, "").strip()
if task_name in ['xnli', 'indicxnli', 'pawsx'] :
pattern = r'\b(True|False|Neither|true|false|neither)\b'
match = re.search(pattern, response)
if match :
response = match.group(0)
if task_name in ['xcopa', 'xstorycloze'] :
pattern = r'Choice number: \s*(\d+)'
match = re.search(pattern, response)
if match :
response = match.group(0)
if ":" in response: # avoid code switching, e.g. eu "Aukera zenbakia: 1" ru "Выбор номер: 1"
response = "Choice number: " + response.split(":")[1].strip()[0]
if task_name == 'afrisenti' :
pattern = r'\b(positive|negative|neutral|Positive|Negative|Neutral)\b'
match = re.search(pattern, response)
if match :
response = match.group(0)
return response
post_preds = {}
for l in all_predictions :
post_preds[l] = [_format(p) for p in all_predictions[l]]
return post_preds
def compuate_metrics(task_name, all_predictions, all_references) :
if task_name in ['xquad', 'tydiqa'] :
evaluator = SquadEvaluator()
elif 'mafand' in task_name :
evaluator = ChrfEvaluator()
else :
evaluator = EMEvaluator() # exact match for classification tasks
# post-processing the response before automatic evaluation
all_predictions = post_process(task_name, all_predictions)
metrics = defaultdict(dict)
for l in all_predictions.keys() :
score = evaluator.score(predictions=all_predictions[l], references=all_references[l])
if isinstance(score, dict) :
for k, v in score.items() :
metrics[k][l] = v
else :
metrics['accuracy'][l] = score
return metrics
def run_task(model, model_args, data_args, training_args, icl_args) :
# create output dir
os.makedirs(training_args.output_dir, exist_ok=True)
# load config & templates
data_config = load_config(data_args.task_config_path, data_args.task_name)
languages = data_config['languages']
language_names = data_config['language_names']
template_conf = data_config[icl_args.template]
column_token_map = data_config['column_token_map']
output_column = data_config['output_column']
task_instruction = template_conf['system']
input_template = PromptTemplate(template=template_conf['input_template'],
column_token_map=column_token_map)
output_template = PromptTemplate(template=template_conf['output_template'],
column_token_map=column_token_map,
selected_column_name=output_column,
selected_column_map={})
# ---------------------- Data --------------------------
# load data
if data_args.task_name in ['mafand_e2t', 'mafand_t2e'] :
data_preprocess_func = "process_" + data_args.task_name
else :
data_preprocess_func = template_conf['preprocess_func'] if 'preprocess_func' in template_conf.keys() else None
eval_datasets = load_multilingual_data(task_name=data_args.task_name,
hf_dataset=data_config['hf'],
languages=data_config['languages'],
cache_dir=data_args.dataset_cache_dir,
process_func=data_preprocess_func)
# check if the evaluation result already exist
all_results_file = os.path.join(training_args.output_dir, "results.jsonl")
if os.path.exists(all_results_file) :
logger.warning(f"Results file {all_results_file} exists, exiting.")
return
# ---------------------- Evaluation --------------------------
all_references = {}
all_predictions = {}
for lang, lang_name in zip(languages, language_names) :
# if 'zh' not in lang :
# continue
if icl_args.incorrect_language_role :
incorrect_langs = [l for l in language_names if l != lang_name]
instruction = task_instruction.replace('EVALUATION_LANGUAGE', np.random.choice(incorrect_langs))
elif icl_args.no_language_role :
instruction = task_instruction.replace(' in EVALUATION_LANGUAGE', '')
else :
instruction = task_instruction.replace('EVALUATION_LANGUAGE', lang_name)
# dataset_reader
cur_dataset = eval_datasets[lang]
dataset_reader = DatasetReader(cur_dataset,
input_columns=data_config['input_columns'],
output_column=data_config['output_column'],
output_template=output_template,
test_split=data_config['test_split'],
ds_size=4 if icl_args.limit else data_args.num_openai_samples)
all_references[lang] = dataset_reader.generate_output_field_corpus(
dataset_reader.dataset[data_config['test_split']])
# check if the predictions already exist
output_json_filepath = training_args.output_dir
output_json_filename = f"{lang}_predictions"
prediction_file = f'{output_json_filepath}/{output_json_filename}.json'
if os.path.exists(prediction_file) :
logger.warning(f'Predictions for {lang} already exist. Skipping the evaluation...')
predictions = get_predictions_from_file(prediction_file)
all_predictions[lang] = predictions
continue
# retriever
if icl_args.retriever == 'zero' :
retriever = ZeroRetriever(dataset_reader,
index_split=data_config['index_split'],
test_split=data_config['test_split'])
elif icl_args.retriever == 'random' :
retriever = RandomRetriever(dataset_reader,
index_split=data_config['index_split'],
test_split=data_config['test_split'],
ice_num=icl_args.num_shots,
seed=training_args.data_seed)
elif icl_args.retriever == 'flip':
#assert data_args.task_name not in ['tydiqa', 'xquad', 'mafand_e2t', 'mafand_t2e']
retriever = FlipRetriever(dataset_reader,
index_split=data_config['index_split'],
test_split=data_config['test_split'],
ice_num=icl_args.num_shots,
seed=training_args.data_seed)
elif icl_args.retriever == 'topk' :
retriever = TopkRetriever(dataset_reader,
index_split=data_config['index_split'],
test_split=data_config['test_split'],
sentence_transformers_model_name='LaBSE',
tokenizer_name='sentence-transformers/LaBSE',
ice_num=icl_args.num_shots)
else :
raise NotImplementedError
# inferencer
max_new_tokens = 100 if 'mafand' in data_args.task_name else 50
inferencer = LlamaInferencer(model,
tokenizer_name=model_args.tokenizer_name,
max_model_token_num=model_args.max_seq_len,
generation_kwargs={"max_new_tokens" : max_new_tokens}, # greedy decoding
model_parallel=True,
quantize=True if model_args.int8 else False)
predictions = inferencer.inference(retriever, system=instruction,
input_template=input_template,
output_template=output_template,
output_json_filepath=output_json_filepath,
output_json_filename=output_json_filename)
all_predictions[lang] = predictions
# ---------------------- Compute metrics --------------------------
metrics = compuate_metrics(data_args.task_name, all_predictions, all_references)
# ---------------------- Save results --------------------------
all_results = defaultdict(dict)
# get average score across languages
for metric, val in metrics.items() :
all_results[metric] = val
all_results['avg_' + metric] = np.mean([s for _, s in val.items()])
# ---------------------- Save results --------------------------
all_results["config"]["model_name_or_path"] = model_args.model_name
all_results["config"]["task_name"] = data_args.task_name
all_results["config"]["template"] = icl_args.template
all_results["config"]["source_lang"] = icl_args.source_lang
all_results["config"]["num_shots"] = icl_args.num_shots
all_results["config"]["retriever"] = icl_args.retriever
all_results["config"]["data_seed"] = training_args.data_seed
all_results["config"]["log_time"] = ctime(time())
# save to .jsonl
with training_args.main_process_first(desc="Write results to file") :
dumped = json.dumps(all_results, indent=2)
with open(all_results_file, "w") as f :
f.write(dumped)
def main() :
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments, InContextLearningArguments))
model_args, data_args, training_args, icl_args = parser.parse_args_into_dataclasses()
model_args.model_name_or_path = SUPPORTED_MODELS[model_args.model_name]['model_name_or_path']
model_args.max_seq_len = SUPPORTED_MODELS[model_args.model_name]['max_seq_len']
model_args.tokenizer_name = model_args.model_name_or_path
print(f"model arguments: {model_args}")
print(f"ICL arguments: {icl_args}")
log_level = training_args.get_process_log_level()
logger.setLevel(log_level)
datasets.utils.logging.set_verbosity(log_level)
transformers.utils.logging.set_verbosity(log_level)
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
# login to huggingface hub to use llama-2
login(token=training_args.hub_token)
# set seed before initializing model.
set_seed(training_args.seed)
if icl_args.compute_metric_only :
logger.warning("Computing metrics only. No evaluation will be performed.")
model = None
else :
model = AutoModelForCausalLM.from_pretrained(model_args.model_name_or_path,
cache_dir=model_args.cache_dir,
load_in_8bit=True if model_args.int8 else False,
device_map='auto')
# ---------------------- RUN --------------------------
root_path = training_args.output_dir
for task_name in data_args.task_list.split(",") :
data_args.task_name = task_name.strip()
training_args.output_dir = os.path.join(root_path, task_name)
run_task(model, model_args, data_args, training_args, icl_args)
if __name__ == "__main__" :
main()