-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathgaussian_blur_image_2.c
159 lines (137 loc) · 3 KB
/
gaussian_blur_image_2.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
#include "header.h"
void gaussian_blur_image_2(
int *I,
int xdim,
int ydim,
double sigma_x,
double sigma_y,
int precision,
int *I_out
)
{
int size_x;
int size_y;
double *G_x;
double *G_y;
int i;
double x;
double y;
double pi=acos(-1);
double *row;
int j;
double norm;
int k;
double val;
double *col;
double *I_dbl;
double val_dbl;
int val_int;
/*
Allocate memory for output image in double form
*/
I_dbl= (double *)calloc(xdim*ydim,sizeof(double));
/*
Copy input image into output image
*/
for ( i= 0 ; i< ydim ; i++ ) {
for ( j= 0 ; j< xdim ; j++ ) {
I_dbl[i*xdim+j]= (double)I[i*xdim+j];
}
}
/*
We are gonna apply a 1d kernel
(defined by sigma and precision)
in both directions
*/
size_x= (int)((double)precision*sigma_x)+1;
G_x= (double *)calloc(size_x,sizeof(double));
for ( j= 0 ; j< size_x ; j++ ) {
x= (double)j;
G_x[j]= 1/(sqrt(2*pi)*sigma_x)*exp(-x*x/(2*sigma_x*sigma_x));
}
size_y= (int)((double)precision*sigma_y)+1;
G_y= (double *)calloc(size_y,sizeof(double));
for ( i= 0 ; i< size_y ; i++ ) {
y= (double)i;
G_y[i]= 1/(sqrt(2*pi)*sigma_y)*exp(-y*y/(2*sigma_y*sigma_y));
}
/*
We are gonna copy the image row by row,
convolute each row, and
put the results back in I
*/
row= (double *)calloc(xdim,sizeof(double));
for ( i= 0 ; i< ydim ; i++ ) {
for ( j= 0 ; j< xdim ; j++ ) {
norm= 0.0;
k= 0;
val= G_x[k]*I_dbl[i*xdim+j];
norm+= G_x[k];
for ( k= 1 ; k< size_x ; k++ ) {
if ( !( (j+k)<xdim ) )
continue;
val+= G_x[k]*I_dbl[i*xdim+(j+k)];
norm+= G_x[k];
}
for ( k= 1 ; k< size_x ; k++ ) {
if ( !( (j-k)>=0 ) )
continue;
val+= G_x[k]*I_dbl[i*xdim+(j-k)];
norm+= G_x[k];
}
row[j]= val/norm;
}
for ( j= 0 ; j< xdim ; j++ ) {
I_dbl[i*xdim+j]= row[j];
}
}
free(row);
/*
We are gonna copy the image col by col,
convolute each col, and
put the results back in I
*/
col= (double *)calloc(ydim,sizeof(double));
for ( j= 0 ; j< xdim ; j++ ) {
for ( i= 0 ; i< ydim ; i++ ) {
norm= 0.0;
k= 0;
val= G_y[k]*I_dbl[i*xdim+j];
norm+= G_y[k];
for ( k= 1 ; k< size_y ; k++ ) {
if ( !( (i+k)<ydim ) )
continue;
val+= G_y[k]*I_dbl[(i+k)*xdim+j];
norm+= G_y[k];
}
for ( k= 1 ; k< size_y ; k++ ) {
if ( !( (i-k)>=0 ) )
continue;
val+= G_y[k]*I_dbl[(i-k)*xdim+j];
norm+= G_y[k];
}
col[i]= val/norm;
}
for ( i= 0 ; i< ydim ; i++ ) {
I_dbl[i*xdim+j]= col[i];
}
}
free(col);
for ( i= 0 ; i< ydim ; i++ ) {
for ( j= 0 ; j< xdim ; j++ ) {
val_dbl= I_dbl[i*xdim+j];
val_int= (int)(val_dbl+0.5);
if ( val_int < 0 )
val_int= 0;
if ( val_int > 255 )
val_int= 255;
I_out[i*xdim+j]= val_int;
}
}
free(G_x);
free(G_y);
/*
Free memory for output image in double form
*/
free(I_dbl);
}