-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathrotate_image_linear.c
260 lines (216 loc) · 4.43 KB
/
rotate_image_linear.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
#include "header.h"
void rotate_image_linear(
int *image_arr1,
int width1,
int height1,
double theta,
int **pimage_arr2,
int *porigin2_i,
int *porigin2_j,
int *pwidth2,
int *pheight2
)
/*
Rotation of image_arr1 w/r to its center
theta = angle of rotation w/r to x-axis
*/
/*
The top left corner of image_arr2 is at
(origin2_i,origin2_j), which are coordinates w/r to center of image_arr1
The width of image_arr2 is width2
The height of image_arr2 is height2
*/
{
int i;
int j;
double P[2*2];
int min_i;
int min_j;
int max_i;
int max_j;
int point_ind;
double x_prime_dbl;
double y_prime_dbl;
double X_prime[2];
double X[2];
double x_dbl;
double y_dbl;
int x;
int y;
int origin2_i;
int origin2_j;
int width2;
int height2;
double P1[2*2];
int i2;
int j2;
int pixel2;
int *image_arr2;
double x1;
double y1;
double intensity_dbl;
int intensity_int;
/*
Compute the rotation matrix
*/
i= 0;
j= 0;
P[2*i+j]= cos(theta);
i= 0;
j= 1;
P[2*i+j]=-sin(theta);
i= 1;
j= 0;
P[2*i+j]= sin(theta);
i= 1;
j= 1;
P[2*i+j]= cos(theta);
/*
Get bounding box for image_arr2
*/
min_i= +INT_MAX;
min_j= +INT_MAX;
max_i= -INT_MAX;
max_j= -INT_MAX;
for ( point_ind= 0 ; point_ind< 4 ; point_ind++ ) {
if ( point_ind == 0 ) {
x_prime_dbl=-(double)width1/2.0;
y_prime_dbl=-(double)height1/2.0;
}
if ( point_ind == 1 ) {
x_prime_dbl=+(double)width1/2.0;
y_prime_dbl=-(double)height1/2.0;
}
if ( point_ind == 2 ) {
x_prime_dbl=+(double)width1/2.0;
y_prime_dbl=+(double)height1/2.0;
}
if ( point_ind == 3 ) {
x_prime_dbl=-(double)width1/2.0;
y_prime_dbl=+(double)height1/2.0;
}
X_prime[0]= x_prime_dbl;
X_prime[1]= y_prime_dbl;
math_matrix_vector_product(
P,
2,
2,
X_prime,
2,
X
);
x_dbl= X[0];
y_dbl= X[1];
x= (int)round(x_dbl);
y= (int)round(y_dbl);
i= y;
j= x;
if ( i < min_i )
min_i= i;
if ( j < min_j )
min_j= j;
if ( i > max_i )
max_i= i;
if ( j > max_j )
max_j= j;
}
/*
Get the top-left corner of the image_arr2
w/r to center of image_arr1
*/
origin2_i= min_i;
origin2_j= min_j;
/*
Get the width anf height of image_arr2
*/
width2= max_j-min_j+1;
height2= max_i-min_i+1;
/*
Allocate memory for image_arr2
*/
image_arr2= (int *)calloc(width2*height2,sizeof(int));
/*
All that's left now is to fill image_arr2
*/
/*
Compute the inverse of the rotation matrix
*/
math_matrix_transpose(
P,
2,
2,
P1
);
/*
For each pixel in image_arr2,
we get corresponding pixel in image_arr1
If there's no such pixel in image_arr1,
we do nothing, that is, pixel stays black (intensity = 0)
*/
for ( i2= 0 ; i2< height2 ; i2++ ) {
for ( j2= 0 ; j2< width2 ; j2++ ) {
/*
We need to get the corresponding pixel (i1,j1) in image1
*/
x_dbl= (double)j2+(double)origin2_j;
y_dbl= (double)i2+(double)origin2_i;
X[0]= x_dbl;
X[1]= y_dbl;
math_matrix_vector_product(
P1,
2,
2,
X,
2,
X_prime
);
x_prime_dbl= X_prime[0];
y_prime_dbl= X_prime[1];
/*
(x_prime,y_prime) are pixel coordinates w/r to center of image_arr1
We need to get pixel coordinates w/r to origin of image_arr1
*/
x_prime_dbl+= (double)width1/2.0;
y_prime_dbl+= (double)height1/2.0;
x1= x_prime_dbl;
y1= y_prime_dbl;
/*
if ( !(x1 >= 0.0) )
x1= 0.0;
if ( !(x1 < (double)width1) )
x1= (double)(width1-1);
if ( !(y1 >= 0.0) )
y1= 0.0;
if ( !(y1 < (double)height1) )
y1= (double)(height1-1);
*/
if ( !(x1 >= 0.0) )
continue;
if ( !(x1 <= (double)(width1-1)) )
continue;
if ( !(y1 >= 0.0) )
continue;
if ( !(y1 <= (double)(height1-1)) )
continue;
intensity_dbl= bilinear_interpolation_on_image_int(
image_arr1,
x1,
y1,
width1,
height1
);
intensity_int= (int)round(intensity_dbl);
if ( !(intensity_int >= 0) )
intensity_int= 0;
if ( !(intensity_int <= 255) )
intensity_int= 255;
pixel2= i2*width2+j2;
image_arr2[pixel2]= intensity_int;
}
}
(*pimage_arr2)= image_arr2;
(*porigin2_i)= origin2_i;
(*porigin2_j)= origin2_j;
(*pwidth2)= width2;
(*pheight2)= height2;
}