-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtmva_utils.py
390 lines (319 loc) · 14.9 KB
/
tmva_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
import ROOT
import uproot
import numpy as np
from array import array
import yaml
from os import makedirs
from os.path import join, isfile
from sklearn.utils.class_weight import compute_class_weight
from utils import generate_cv_data
def array_to_dict(input_array):
"""
Converts a numpy ndarray to a dictionary of arrays, where each key
is "var{i}" with i being the first dimensional index of the variable
in the array.
Args:
input_array (ndarray): The input array.
Returns:
dict: The dictionary of arrays.
"""
out_dict = {}
for i in range(input_array.shape[1]):
out_dict[f"var{i}"] = input_array[:, i]
return out_dict
def import_settings(yaml_file):
"""
Imports the model settings from a YAML file and returns them as a
string that can be used as input for TMVA.Factory.BookMethod.
Args:
yaml_file (str): The path to the YAML file.
Returns:
str: The settings as a string.
"""
with open(yaml_file, 'r') as stream:
settings = yaml.safe_load(stream)
parsed_settings = []
for key, value in settings.items():
if isinstance(value, bool) and value:
parsed_settings.append(key)
else:
parsed_settings.append(f"{key}={value}")
return ":".join(parsed_settings)
def train_tmva_model(data, model_identifier="BDT", suffix_string="test",
root_file_dir="TMVA_models/"):
x_train = data["x_train"]
y_train = data["y_train"]
x_val = data["x_val"]
y_val = data["y_val"]
# converting to ROOT TTrees
ens_root_file_dir = join(root_file_dir, suffix_string)
makedirs(ens_root_file_dir, exist_ok=True)
tree_path = join(ens_root_file_dir, f"trees_{suffix_string}.root")
tree_file = uproot.recreate(tree_path)
tree_file["sig_train"] = array_to_dict(x_train[y_train == 1])
tree_file["bkg_train"] = array_to_dict(x_train[y_train == 0])
tree_file["sig_val"] = array_to_dict(x_val[y_val == 1])
tree_file["bkg_val"] = array_to_dict(x_val[y_val == 0])
# loading them again from file to convert uproot trees to native TTrees
tree_file_root = ROOT.TFile(tree_path, "READ")
tree_sig_train = tree_file_root.Get("sig_train")
tree_bkg_train = tree_file_root.Get("bkg_train")
tree_sig_val = tree_file_root.Get("sig_val")
tree_bkg_val = tree_file_root.Get("bkg_val")
class_weights_train = compute_class_weight(
'balanced', classes=np.unique(y_train), y=y_train)
class_weights_val = compute_class_weight(
'balanced', classes=np.unique(y_val), y=y_val)
# instantiating a TMVA factory
model_data_path = join(ens_root_file_dir, f"data_{suffix_string}.root")
ROOT.TMVA.Tools.Instance()
model_data_file = ROOT.TFile(model_data_path, "RECREATE")
factory = ROOT.TMVA.Factory("TMVAClassification", model_data_file,
":".join(
["!V",
"!Silent",
"Color",
"DrawProgressBar",
"Transformations=I;D;P;G,D",
"AnalysisType=Classification"
]))
# putting data into TMVA dataloader
dataloader = ROOT.TMVA.DataLoader(ens_root_file_dir)
for i in range(x_train.shape[1]):
dataloader.AddVariable(f"var{i}", "F")
dataloader.AddBackgroundTree(tree_bkg_train,
class_weights_train[0],
"Training")
dataloader.AddBackgroundTree(tree_bkg_val,
class_weights_val[0],
"Test")
dataloader.AddSignalTree(tree_sig_train,
class_weights_train[1],
"Training")
dataloader.AddSignalTree(tree_sig_val,
class_weights_val[1],
"Test")
# defining BDT model and adding dataloader
config_file = join(f"TMVA_configs/{model_identifier}.yml")
assert isfile(config_file), f"Config file {config_file} not found."
factory.BookMethod(dataloader,
ROOT.TMVA.Types.kBDT,
model_identifier,
f"!H:!V:{import_settings(config_file)}")
# actual training
factory.TrainAllMethods()
factory.TestAllMethods()
factory.EvaluateAllMethods()
model_data_file.Close()
return model_data_path
def train_tmva_ensemble(data, num_models=10, cv_mode="fixed",
model_identifier="BDT",
root_file_dir="TMVA_models/"):
"""
Trains an ensemble of default TMVA BDT models and returns the
mean predictions on the test set.
Args:
data (dict): A dictionary containing the training, validation and test
sets as well as the corresponding labels.
num_models (int, optional): The number of models in the ensemble.
Defaults to 10.
cv_mode (str, optional): The cross-validation mode to use. Valid values
are "fixed", "random", or "k-fold". The meaning of the available
modes is as follows:
- "fixed": Train ensemble on a fixed assignment of training and
validation set.
- "random": Concatenate training and validation set and randomly
assign training and validation samples for each model
constituting the ensemble
- "k-fold": Concatenate training and validation set, then split
data into `num_models` equally sized parts assign one fold as
validation set and the remaining folds as training set. Train
all possible assignments (i.e. you should end up with
`num_models` models each trained on a different train/validation
k-fold assignment)
Defaults to "fixed".
model_identifier (str, optional): The identifier to use for the
TMVA model configuration. It must coincide with the name of a
YAML file in ./TMVA_configs/. Defaults to "BDT".
root_file_dir (str, optional): The directory to save the ROOT files.
Returns:
list: A list of paths to the model root files.
"""
model_list = []
cv_data = generate_cv_data(data, num_models, cv_mode)
for ens, dat in zip(range(num_models), cv_data):
print(f"Training model {ens+1}/{num_models}...")
tmp_model_data_path = train_tmva_model(
dat, model_identifier=model_identifier, suffix_string=f"ens{ens}",
root_file_dir=root_file_dir)
model_list.append(tmp_model_data_path)
return model_list
def train_tmva_multi(data, num_runs=10, ensembles_per_model=10,
cv_mode="fixed", model_identifier="BDT",
root_file_dir_base="tmva_root_files"):
"""
Run multiple ensembles of default TMVA BDT trainings and
return array of mean test predictions for each ensemble.
Args:
data (dict): A dictionary containing the training, validation and test
sets as well as the corresponding labels.
num_runs (int, optional): The number of ensemble trainings to run.
Default is 10.
ensembles_per_model (int, optional): The number of ensembles to train
per ensemble. Default is 10.
cv_mode (str, optional): The cross-validation mode to use. Valid values
are "fixed", "random", or "k-fold". The meaning of the available
modes is as follows:
- "fixed": Train ensemble on a fixed assignment of training and
validation set.
- "random": Concatenate training and validation set and randomly
assign training and validation samples for each model
constituting the ensemble
- "k-fold": Concatenate training and validation set, then split
data into `num_models` equally sized parts assign one fold as
validation set and the remaining folds as training set. Train
all possible assignments (i.e. you should end up with
`num_models` models each trained on a different train/validation
k-fold assignment)
Defaults to "fixed".
model_identifier (str, optional): The identifier to use for the
TMVA model configuration. It must coincide with the name of a
YAML file in ./TMVA_configs/. Defaults to "BDT".
root_file_dir_base (str, optional): The base name of the directory
where ROOT files will be stored. A run number will be appended.
Returns:
list: A list of list of model root file paths. The first index of the
list corresponds to the run number, the second index to the
ensemble number.
"""
if cv_mode not in ["fixed", "random", "k-fold"]:
raise ValueError(
"cv_mode must be either 'fixed', 'random' or 'k-fold'"
)
run_models = []
for run in range(num_runs):
print(f"Run {run+1}/{num_runs}")
run_dir = root_file_dir_base+f"_{run}"
makedirs(run_dir, exist_ok=True)
ens_models = train_tmva_ensemble(
data, num_models=ensembles_per_model, cv_mode=cv_mode,
root_file_dir=run_dir, model_identifier=model_identifier)
run_models.append(ens_models)
return run_models
def eval_tmva_model(data, model_identifier="BDT",
root_file_dir="TMVA_models/",
suffix_string="test"):
"""Evaluate a single TMVA BDT model on the test set.
Args:
data (dict): A dictionary containing the training, validation and test
model_identifier (str, optional): The identifier to use for the
TMVA model configuration. It must coincide with the name of a
YAML file in ./TMVA_configs/. Defaults to "BDT".
root_file_dir (str, optional): The directory where the ROOT files
containing the trained model is stored. Defaults to
"TMVA_models/".
suffix_string (str, optional): The suffix string to append to the
model name. Used e.g. to denote an ensemble model number.
Defaults to "test".
Returns:
A flat numpy array containing the predictions of the TMVA BDT
model on the test set.
"""
x_test = data["x_test"]
# convert data to native TTree
tree_path = join(root_file_dir, f"test_tree_{suffix_string}.root")
tree_file = uproot.recreate(tree_path)
tree_file["test"] = array_to_dict(x_test)
tree_file_root = ROOT.TFile(tree_path, "READ")
tree_test = tree_file_root.Get("test")
# compute model predictions on the test set
reader = ROOT.TMVA.Reader()
var_names = [f"var{i}" for i in range(x_test.shape[1])]
vars = []
for var_name in var_names:
vars.append(array('f', [0]))
reader.AddVariable(var_name, vars[-1])
tmp_model_preds = np.ones(x_test.shape[0]) * -999.
reader.BookMVA(
model_identifier,
join(root_file_dir, "weights",
f"TMVAClassification_{model_identifier}.weights.xml")
)
for i in range(len(var_names)):
tree_test.SetBranchAddress(var_names[i], vars[i])
for evt in range(tree_test.GetEntries()):
tree_test.GetEntry(evt)
tmp_model_preds[evt] = reader.EvaluateMVA(model_identifier)
tree_file_root.Close()
return tmp_model_preds
def eval_tmva_ensemble(data, num_models=10,
model_identifier="BDT",
root_file_dir="TMVA_models/",
save_full_preds=None):
"""Evaluate an ensemble of TMVA BDT models on the test set.
Args:
data (dict): A dictionary containing the training, validation and test
num_models (int, optional): The number of models in the ensemble.
Defaults to 10.
model_identifier (str, optional): The identifier to use for the
TMVA model configuration. It must coincide with the name of a
YAML file in ./TMVA_configs/. Defaults to "BDT".
root_file_dir (str, optional): The directory where the ROOT files
containing the trained models are stored. Defaults to
"TMVA_models/".
save_full_preds (str, optional): If not None, the full predictions of
each model in the ensemble will be saved to the specified path.
Returns:
A flat numpy array containing the mean predictions of each TMVA BDT
ensemble on the test set.
"""
ens_preds_list = []
for ens in range(num_models):
ens_root_file_dir = join(root_file_dir, f"ens{ens}")
tmp_model_preds = eval_tmva_model(
data,
model_identifier=model_identifier,
root_file_dir=ens_root_file_dir,
suffix_string=f"ens{ens}")
ens_preds_list.append(tmp_model_preds)
ens_preds = np.stack(ens_preds_list, axis=0)
if save_full_preds is not None:
print(f"Saving full predictions as {save_full_preds}")
np.save(save_full_preds, ens_preds)
return np.mean(ens_preds, axis=0)
def eval_tmva_multi(data, num_runs=10, ensembles_per_model=10,
model_identifier="BDT",
root_file_dir_base="tmva_root_files",
save_ensemble_preds=False):
"""Evaluate multiple ensembles of TMVA BDT models on the test set.
Args:
data (dict): A dictionary containing the training, validation and test
num_runs (int, optional): The number of full ensembles to train.
Defaults to 10.
ensembles_per_model (int, optional): The number of models trained
per ensemble. Defaults to 10.
model_identifier (str, optional): The identifier to use for the
TMVA model configuration. It must coincide with the name of a
YAML file in ./TMVA_configs/. Defaults to "BDT".
root_file_dir_base (str, optional): The base name of the directory
where ROOT files will be stored. A run number will be appended.
Defaults to "tmva_root_files".
save_ensemble_preds (bool, optional): If True, the full predictions of
each ensemble will be saved to a .npy file.
Returns:
full_preds (array-like): The mean predictions of each ensemble on
the test set, with shape (num_runs, x_test.shape[0]).
"""
full_preds_list = []
for run in range(num_runs):
run_dir = root_file_dir_base+f"_{run}"
if save_ensemble_preds:
save_str = join(run_dir, f"ensemble_preds_run{run}.npy")
else:
save_str = None
ens_mean_preds = eval_tmva_ensemble(
data, num_models=ensembles_per_model,
model_identifier=model_identifier,
root_file_dir=run_dir, save_full_preds=save_str)
full_preds_list.append(ens_mean_preds)
return np.stack(full_preds_list, axis=0)