-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlstm-text-generator.py
203 lines (163 loc) · 6.13 KB
/
lstm-text-generator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
"""Example script to generate text from Nietzsche's writings.
At least 20 epochs are required before the generated text
starts sounding coherent.
It is recommended to run this script on GPU, as recurrent
networks are quite computationally intensive.
If you try this script on new data, make sure your corpus
has at least ~100k characters. ~1M is better.
"""
from keras.callbacks import LambdaCallback, TensorBoard
from keras.models import Sequential
from keras.layers import Dense
from keras.layers import LSTM
from keras.optimizers import RMSprop
from keras.utils.data_utils import get_file
import numpy as np
import random
import sys
import io
from datetime import datetime
import os
import time
# Options
CORPUS = 'nietzsche'
PRINT_TEXT = True
# I/O
CORPUS_DIR = 'data'
TB_LOG_DIR = 'logdir'
OUTPUT_DIR = 'output'
OUTPUT_FILE = os.path.join(OUTPUT_DIR, CORPUS + '.txt')
if not os.path.exists(OUTPUT_DIR):
os.mkdir(OUTPUT_DIR)
# Constants
DATETIME_FORMAT = '%y-%m-%d_%H-%M'
# Parameters
MAX_LEN = 40
CHAR_STEP = 3
DIVERSITIES = [0.2, 0.4, 0.7, 1.0] # High number: More randomness
GENERATION_LEN = 400
# Hyperparameters
BATCH_SIZE = 128
EPOCHS = 60
LEARNING_RATE = 0.01
def get_path(corpus='nietzsche'):
""" Choose corpus for training
:param corpus: {'nietzsche', 'donquijote', 'shakespeare', 'les-miserables',
'petit-prince', 'hemingway'}, default 'nietzsche'
:return: path
Path to selected corpus
"""
if corpus == 'donquijote':
path = os.path.join(CORPUS_DIR, 'donquijote.txt')
elif corpus == 'hemingway':
path = os.path.join(CORPUS_DIR, 'hemingway.txt')
elif corpus == 'shakespeare':
path = os.path.join(CORPUS_DIR, 'shakespeare.txt')
elif corpus == 'les-miserables':
path = os.path.join(CORPUS_DIR, 'les-miserables.txt')
elif corpus == 'petit-prince':
path = os.path.join(CORPUS_DIR, 'petit-prince.txt')
elif corpus == 'nietzsche':
origin = 'https://s3.amazonaws.com/text-datasets/nietzsche.txt'
path = get_file('nietzsche.txt', origin=origin)
else:
raise ValueError('Choose valid corpus')
return path
with io.open(get_path(corpus=CORPUS), encoding='utf-8') as f:
# Use lower case to reduce dictionary size
text = f.read().lower()
print('Corpus length:', len(text))
# Create lookup tables for character and index
chars = sorted(list(set(text)))
print('Total chars:', len(chars))
char_indices = dict((c, i) for i, c in enumerate(chars))
indices_char = dict((i, c) for i, c in enumerate(chars))
# Cut the text in semi-redundant sequences of MAX_LEN characters
sentences = []
next_chars = []
for i in range(0, len(text) - MAX_LEN, CHAR_STEP):
sentences.append(text[i: i + MAX_LEN])
next_chars.append(text[i + MAX_LEN])
print('Number sequences:', len(sentences))
print('Vectorization...')
x = np.zeros((len(sentences), MAX_LEN, len(chars)), dtype=np.bool)
y = np.zeros((len(sentences), len(chars)), dtype=np.bool)
for i, sentence in enumerate(sentences):
for t, char in enumerate(sentence):
x[i, t, char_indices[char]] = 1
y[i, char_indices[next_chars[i]]] = 1
# Build the model: a single LSTM
print('Build model...')
model = Sequential()
model.add(LSTM(128, input_shape=(MAX_LEN, len(chars))))
model.add(Dense(len(chars), activation='softmax'))
optimizer = RMSprop(lr=LEARNING_RATE)
model.compile(loss='categorical_crossentropy', optimizer=optimizer,
metrics=['accuracy'])
def sample(preds, diversity=1.0):
""" Helper function to sample an index from a probability array
:param preds: list of int
Prediction indeces
:param diversity: float
Degree of creativity/randomness
:return: int
Sampled index
"""
preds = np.asarray(preds).astype('float64')
preds = preds**(1 / diversity)
preds = preds / np.sum(preds)
probas = np.random.multinomial(n=1, pvals=preds, size=1)
return np.argmax(probas)
def on_epoch_end(epoch, _):
# Function invoked at end of each epoch. Prints generated text.
epoch = epoch + 1 # Start count at 1
# Do not log text generation for all epochs
log_result = epoch <= 5 or epoch % 10 == 0
if not log_result:
return
print()
print('*** Generating text after Epoch: %d' % epoch)
start_index = random.randint(0, len(text) - MAX_LEN - 1)
with open(OUTPUT_FILE, 'a', encoding='utf-8') as output_file:
for diversity in DIVERSITIES:
generated = ''
sentence = text[start_index: start_index + MAX_LEN]
seed = sentence[:]
generated += sentence
if PRINT_TEXT:
print('\n')
print('*** Diversity:', diversity)
print('*** Generating with seed: "' + sentence + '"')
sys.stdout.write(generated)
for i in range(GENERATION_LEN):
x_pred = np.zeros((1, MAX_LEN, len(chars)))
for t, char in enumerate(sentence):
x_pred[0, t, char_indices[char]] = 1.
preds = model.predict(x_pred, verbose=0)[0]
next_index = sample(preds, diversity)
next_char = indices_char[next_index]
generated += next_char
sentence = sentence[1:] + next_char
if PRINT_TEXT:
sys.stdout.write(next_char)
sys.stdout.flush()
output_text = '\n\nEpoch %s, Diversity %s, Seed: %s' \
'\nGenerated: %s'\
% (epoch, diversity, seed, generated)
try:
output_file.write(output_text)
except UnicodeEncodeError as e:
print('UnicodeError', e)
except Exception as e:
print('Other Exception', e)
if PRINT_TEXT:
print('\n')
# Print callback
print_callback = LambdaCallback(on_epoch_end=on_epoch_end)
# Tensorboard callback
timestamp = datetime.fromtimestamp(time.time()).strftime(DATETIME_FORMAT)
log_dir = os.path.join(TB_LOG_DIR, timestamp)
tb_callback = TensorBoard(log_dir=log_dir)
# Train model
model.fit(x, y, batch_size=BATCH_SIZE, epochs=EPOCHS,
callbacks=[print_callback, tb_callback])