-
-
Notifications
You must be signed in to change notification settings - Fork 16.6k
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
detect.py startup time #10779
Comments
👋 Hello @lucas-mior, thank you for your interest in YOLOv5 🚀! Please visit our ⭐️ Tutorials to get started, where you can find quickstart guides for simple tasks like Custom Data Training all the way to advanced concepts like Hyperparameter Evolution. If this is a 🐛 Bug Report, please provide screenshots and minimum viable code to reproduce your issue, otherwise we can not help you. If this is a custom training ❓ Question, please provide as much information as possible, including dataset images, training logs, screenshots, and a public link to online W&B logging if available. For business inquiries or professional support requests please visit https://ultralytics.com or email support@ultralytics.com. RequirementsPython>=3.7.0 with all requirements.txt installed including PyTorch>=1.7. To get started: git clone https://github.com/ultralytics/yolov5 # clone
cd yolov5
pip install -r requirements.txt # install EnvironmentsYOLOv5 may be run in any of the following up-to-date verified environments (with all dependencies including CUDA/CUDNN, Python and PyTorch preinstalled):
StatusIf this badge is green, all YOLOv5 GitHub Actions Continuous Integration (CI) tests are currently passing. CI tests verify correct operation of YOLOv5 training, validation, inference, export and benchmarks on MacOS, Windows, and Ubuntu every 24 hours and on every commit. |
@lucas-mior 👋 Hello! Thanks for asking about handling inference results. YOLOv5 🚀 PyTorch Hub models allow for simple model loading and inference in a pure python environment without using Simple Inference ExampleThis example loads a pretrained YOLOv5s model from PyTorch Hub as import torch
# Model
model = torch.hub.load('ultralytics/yolov5', 'yolov5s') # yolov5n - yolov5x6 official model
# 'custom', 'path/to/best.pt') # custom model
# Images
im = 'https://ultralytics.com/images/zidane.jpg' # or file, Path, URL, PIL, OpenCV, numpy, list
# Inference
results = model(im)
# Results
results.print() # or .show(), .save(), .crop(), .pandas(), etc.
results.xyxy[0] # im predictions (tensor)
results.pandas().xyxy[0] # im predictions (pandas)
# xmin ymin xmax ymax confidence class name
# 0 749.50 43.50 1148.0 704.5 0.874023 0 person
# 2 114.75 195.75 1095.0 708.0 0.624512 0 person
# 3 986.00 304.00 1028.0 420.0 0.286865 27 tie
results.pandas().xyxy[0].value_counts('name') # class counts (pandas)
# person 2
# tie 1 See YOLOv5 PyTorch Hub Tutorial for details. Good luck 🍀 and let us know if you have any other questions! |
@glenn-jocher in order to run per image basis offline (downloading source files beforehand on local pc), how should "model" be defined below? model = torch.hub.load('ultralytics/yolov5', 'custom', 'path/to/best.pt') Thanks in advance, |
👋 Hello, this issue has been automatically marked as stale because it has not had recent activity. Please note it will be closed if no further activity occurs. Access additional YOLOv5 🚀 resources:
Access additional Ultralytics ⚡ resources:
Feel free to inform us of any other issues you discover or feature requests that come to mind in the future. Pull Requests (PRs) are also always welcomed! Thank you for your contributions to YOLOv5 🚀 and Vision AI ⭐! |
I have been facing the same issue. Can we reduce the start up time of detect.py as the solution is being used for one image at a time and 5 sec is pretty huge for every run. |
@Tripura-Rajavarapu thank you for bringing up this issue. We understand that the startup time of The Ultralytics YOLOv5 repository aims to provide efficient and optimized object detection models. While we continuously work on improving the performance of the codebase, including the startup time, please keep in mind that the startup time may vary depending on the hardware and other factors. We appreciate your patience and understanding. If you have any further questions or concerns, please feel free to ask. |
Hey, is it possible to make
detect.py
have a shorter startup time?I need to run it on a per image basis, that's why I consider 5 seconds startup time a bit too much (not detection per se, which runs very fast).
Thanks.
The text was updated successfully, but these errors were encountered: