Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

RuntimeError: CUDA error: the launch timed out and was terminated #9087

Closed
2 tasks done
wxylbm opened this issue Aug 22, 2022 · 3 comments
Closed
2 tasks done

RuntimeError: CUDA error: the launch timed out and was terminated #9087

wxylbm opened this issue Aug 22, 2022 · 3 comments
Labels
bug Something isn't working Stale Stale and schedule for closing soon

Comments

@wxylbm
Copy link

wxylbm commented Aug 22, 2022

Search before asking

  • I have searched the YOLOv5 issues and found no similar bug report.

YOLOv5 Component

No response

Bug

CUDA kernel errors might be asynchronously reported at some other API call,so the stacktrace below might be incorrect.
For debugging consider passing CUDA_LAUNCH_BLOCKING=1.
terminate called after throwing an instance of 'c10::CUDAError'
what(): CUDA error: the launch timed out and was terminated
CUDA kernel errors might be asynchronously reported at some other API call,so the stacktrace below might be incorrect.
For debugging consider passing CUDA_LAUNCH_BLOCKING=1.
Exception raised from record at ../aten/src/ATen/cuda/CUDAEvent.h:115 (most recent call first):

Environment

No response

Minimal Reproducible Example

No response

Additional

No response

Are you willing to submit a PR?

  • Yes I'd like to help by submitting a PR!
@wxylbm wxylbm added the bug Something isn't working label Aug 22, 2022
@github-actions
Copy link
Contributor

github-actions bot commented Aug 22, 2022

👋 Hello @wxylbm, thank you for your interest in YOLOv5 🚀! Please visit our ⭐️ Tutorials to get started, where you can find quickstart guides for simple tasks like Custom Data Training all the way to advanced concepts like Hyperparameter Evolution.

If this is a 🐛 Bug Report, please provide screenshots and minimum viable code to reproduce your issue, otherwise we can not help you.

If this is a custom training ❓ Question, please provide as much information as possible, including dataset images, training logs, screenshots, and a public link to online W&B logging if available.

For business inquiries or professional support requests please visit https://ultralytics.com or email support@ultralytics.com.

Requirements

Python>=3.7.0 with all requirements.txt installed including PyTorch>=1.7. To get started:

git clone https://github.com/ultralytics/yolov5  # clone
cd yolov5
pip install -r requirements.txt  # install

Environments

YOLOv5 may be run in any of the following up-to-date verified environments (with all dependencies including CUDA/CUDNN, Python and PyTorch preinstalled):

Status

CI CPU testing

If this badge is green, all YOLOv5 GitHub Actions Continuous Integration (CI) tests are currently passing. CI tests verify correct operation of YOLOv5 training (train.py), validation (val.py), inference (detect.py) and export (export.py) on macOS, Windows, and Ubuntu every 24 hours and on every commit.

@glenn-jocher
Copy link
Member

glenn-jocher commented Aug 30, 2022

@wxylbm 👋 Hello! Thanks for asking about CUDA memory issues. YOLOv5 🚀 can be trained on CPU, single-GPU, or multi-GPU. When training on GPU it is important to keep your batch-size small enough that you do not use all of your GPU memory, otherwise you will see a CUDA Out Of Memory (OOM) Error and your training will crash. You can observe your CUDA memory utilization using either the nvidia-smi command or by viewing your console output:

Screenshot 2021-05-28 at 12 19 51

CUDA Out of Memory Solutions

If you encounter a CUDA OOM error, the steps you can take to reduce your memory usage are:

  • Reduce --batch-size
  • Reduce --img-size
  • Reduce model size, i.e. from YOLOv5x -> YOLOv5l -> YOLOv5m -> YOLOv5s > YOLOv5n
  • Train with multi-GPU at the same --batch-size
  • Upgrade your hardware to a larger GPU
  • Train on free GPU backends with up to 16GB of CUDA memory: Open In Colab Open In Kaggle

AutoBatch

You can use YOLOv5 AutoBatch (NEW) to find the best batch size for your training by passing --batch-size -1. AutoBatch will solve for a 90% CUDA memory-utilization batch-size given your training settings. AutoBatch is experimental, and only works for Single-GPU training. It may not work on all systems, and is not recommended for production use.

Screenshot 2021-11-06 at 12 31 10

Good luck 🍀 and let us know if you have any other questions!

@github-actions
Copy link
Contributor

github-actions bot commented Sep 30, 2022

👋 Hello, this issue has been automatically marked as stale because it has not had recent activity. Please note it will be closed if no further activity occurs.

Access additional YOLOv5 🚀 resources:

Access additional Ultralytics ⚡ resources:

Feel free to inform us of any other issues you discover or feature requests that come to mind in the future. Pull Requests (PRs) are also always welcomed!

Thank you for your contributions to YOLOv5 🚀 and Vision AI ⭐!

@github-actions github-actions bot added the Stale Stale and schedule for closing soon label Sep 30, 2022
@github-actions github-actions bot closed this as not planned Won't fix, can't repro, duplicate, stale Oct 11, 2022
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
bug Something isn't working Stale Stale and schedule for closing soon
Projects
None yet
Development

No branches or pull requests

2 participants