-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathmain.py
81 lines (66 loc) · 2.58 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
import torch
import hydra
import pytorch_lightning as pl
from pytorch_lightning.loggers import WandbLogger
from pytorch_lightning.callbacks import ModelCheckpoint
from custom_data import NbhoodDataModule
from kgt5_model import KGT5_Model
from omegaconf import DictConfig, OmegaConf, open_dict
@hydra.main(version_base=None, config_path="conf", config_name="config")
def run(config: DictConfig) -> None:
print(OmegaConf.to_yaml(config))
hydra_cfg = hydra.core.hydra_config.HydraConfig.get()
with open_dict(config):
config.output_dir = hydra_cfg["runtime"]["output_dir"]
config = process_deprecated(config)
print("output written to", config.output_dir)
dm = NbhoodDataModule(config=config)
if len(config.resume_from) != 0:
model = KGT5_Model.load_from_checkpoint(
config.resume_from, config=config, data_module=dm
)
else:
model = KGT5_Model(config, data_module=dm)
checkpoint_monitor = ModelCheckpoint(
filename="{epoch}-{step}",
monitor="epoch",
mode="max",
save_top_k=config.checkpoint.keep_top_k,
)
train_options = {
'accelerator': config.train.accelerator,
'devices': config.train.devices,
'max_epochs': config.train.max_epochs,
'default_root_dir': config.output_dir,
'strategy': config.train.strategy,
'precision': config.train.precision,
'callbacks': [checkpoint_monitor],
'check_val_every_n_epoch': config.valid.every,
}
if config.wandb.use:
wandb_logger = WandbLogger(
name=config.wandb.run_name,
project=config.wandb.project_name,
config=config,
save_dir=config.output_dir
)
#wandb_logger.experiment.config.update(config)
train_options["logger"] = wandb_logger
trainer = pl.Trainer(**train_options, )#num_sanity_val_steps=0,)# val_check_interval=100)# limit_train_batches=1)
if len(config.resume_from) != 0:
trainer.fit(model, dm, ckpt_path=config.resume_from) # , ckpt_path=ckpt_path)
else:
trainer.fit(model, dm) # , ckpt_path=ckpt_path)
def process_deprecated(config):
if hasattr(config, "use_neighborhood"):
config.context.use = config.use_neighborhood
del config.use_neighborhood
if hasattr(config, "use_wandb"):
config.wandb.use = config.use_wandb
del config.use_wandb
if not hasattr(config, "descriptions"):
config.descriptions = {"use": False}
return config
if __name__ == '__main__':
torch.set_float32_matmul_precision('medium')
run()