-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpredict.py
35 lines (26 loc) · 1.19 KB
/
predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
import tensorflow as tf
from utils.visualise import display
import numpy as np
import cv2
# Uncomment this metric function and compile using it if error while load_model
# def dice_coef(y_true, y_pred):
# y_true_f = tf.keras.backend.flatten(y_true)
# y_pred_f = tf.keras.backend.flatten(y_pred)
# intersection = tf.keras.backend.sum(y_true_f * y_pred_f)
# return (2. * intersection) / (tf.keras.backend.sum(y_true_f + y_pred_f))
def mask_image(self, image):
mask = np.full((32,32,3), 255, np.uint8)
r = np.random.choice(range(2,20)) # image size is 32, so taken 2 padding on sides for masking.
start = (r, r)
end = (r+10, r+10)
mask = cv2.rectangle(mask, start, end, (0,0,0), -1) # drawing a black mask
masked_image = cv2.bitwise_and(image, mask)
return masked_image
(x_train, y_train), (x_test, y_test) = tf.keras.datasets.cifar10.load_data()
model = tf.keras.models.load_model('my_model_5epochs_cifar')
for i in range(0,5):
original = x_test[i] / 255.0
masked_image = masked_image(original)
masked_image = masked_image[np.newaxis,...]
pred = model.predict(masked_image)
display(original, masked_image, pred)