forked from marcobornstein/SWIFT
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathTrain.py
290 lines (232 loc) · 11.3 KB
/
Train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
import numpy as np
import time
import argparse
from GDM import Resnet
from GDM.GraphConstruct import GraphConstruct
from Communicators.AsyncCommunicator import AsyncDecentralized
from Communicators.DSGD import decenCommunicator
from mpi4py import MPI
from GDM.DataPartition import partition_dataset
from Communicators.CommHelpers import flatten_tensors
from Utils.Misc import AverageMeter, Recorder, test_accuracy, test_loss, compute_accuracy
import os
import torch
import torch.utils.data.distributed
import torch.nn as nn
import torch.optim as optim
import torch.backends.cudnn as cudnn
cudnn.benchmark = True
def run(rank, size):
# set random seed
torch.manual_seed(args.randomSeed + rank)
np.random.seed(args.randomSeed)
# select neural network model
num_class = 10
model = Resnet.ResNet(args.resSize, num_class)
# split up GPUs
num_gpus = torch.cuda.device_count()
gpu_id = rank % num_gpus
# initialize the GPU being used
torch.cuda.set_device(gpu_id)
model = model.cuda(gpu_id)
# model loss and optimizer
criterion = nn.CrossEntropyLoss().cuda(gpu_id)
optimizer = optim.SGD(model.parameters(),
lr=args.lr,
momentum=args.momentum,
weight_decay=1e-4,
nesterov=args.nesterov)
# guarantee all local models start from the same point
init_model = sync_allreduce(model, size, MPI.COMM_WORLD)
# load data
val_split = 0
train_loader, test_loader = partition_dataset(rank, size, MPI.COMM_WORLD, val_split, args)
# ensure swift uses its own weighting
if args.comm_style == 'swift':
args.weight_type = 'swift'
# load base network topology
p = 3/size
GP = GraphConstruct(rank, size, MPI.COMM_WORLD, args.graph, args.weight_type, p=p, num_c=args.num_clusters)
if args.comm_style == 'swift':
communicator = AsyncDecentralized(rank, size, MPI.COMM_WORLD, GP,
args.sgd_steps, args.max_sgd, args.wb, args.memory_efficient, init_model)
elif args.comm_style == 'ld-sgd':
communicator = decenCommunicator(rank, size, MPI.COMM_WORLD, GP, args.i1, args.i2)
elif args.comm_style == 'pd-sgd':
communicator = decenCommunicator(rank, size, MPI.COMM_WORLD, GP, args.i1, 1)
elif args.comm_style == 'd-sgd':
communicator = decenCommunicator(rank, size, MPI.COMM_WORLD, GP, 0, 1)
else:
# Anything else just default to our algorithm
communicator = AsyncDecentralized(rank, size, MPI.COMM_WORLD, GP,
args.sgd_steps, args.max_sgd, args.wb, args.memory_efficient, init_model)
# init recorder
comp_time = 0
comm_time = 0
recorder = Recorder(args, rank)
losses = AverageMeter()
top1 = AverageMeter()
if args.noniid:
d_epoch = 200
else:
d_epoch = 100
MPI.COMM_WORLD.Barrier()
# start training
for epoch in range(args.epoch):
init_time = time.time()
record_time = 0
model.train()
# Start training each epoch
for batch_idx, (data, target) in enumerate(train_loader):
start_time = time.time()
# data loading
data, target = data.cuda(non_blocking=True), target.cuda(non_blocking=True)
# forward pass
output = model(data)
loss = criterion(output, target)
# record training loss and accuracy
record_start = time.time()
acc1 = compute_accuracy(output, target)
losses.update(loss.item(), data.size(0))
top1.update(acc1[0].item(), data.size(0))
record_end = time.time() - record_start
record_time += record_end
# backward pass
loss.backward()
# communication happens here
comm_start = time.time()
d_comm_time = communicator.communicate(model)
comm_t = time.time() - comm_start
# gradient step
optimizer.step()
optimizer.zero_grad()
end_time = time.time()
# compute computational time
comp_time += (end_time - start_time - comm_t)
# compute communication time
comm_time += d_comm_time
# update learning rate here
if not args.customLR:
update_learning_rate(optimizer, epoch, drop=0.5, epochs_drop=10.0, decay_epoch=d_epoch,
itr_per_epoch=len(train_loader))
else:
if epoch == 81 or epoch == 122:
args.lr *= 0.1
for param_group in optimizer.param_groups:
param_group["lr"] = args.lr
# evaluate test accuracy at the end of each epoch
t = time.time()
t_loss = test_loss(model, test_loader, criterion)
test_time = time.time() - t
# evaluate validation accuracy at the end of each epoch
# val_acc = test_accuracy(model, val_loader)
# run personalization if turned on
# if args.personalize and args.comm_style == 'swift':
# comm_time += communicator.personalize(epoch+2, val_acc, args.noniid)
# total time spent in algorithm
comp_time -= record_time
epoch_time = comp_time + comm_time
print("rank: %d, epoch: %.3f, loss: %.3f, train_acc: %.3f, test_loss: %.3f, comp time: %.3f, "
"epoch time: %.3f" % (rank, epoch, losses.avg, top1.avg, t_loss, comp_time, epoch_time))
recorder.add_new(comp_time, comm_time, epoch_time, (time.time() - init_time)-test_time,
top1.avg, losses.avg, t_loss)
# reset recorders
comp_time, comm_time = 0, 0
losses.reset()
top1.reset()
# Save data to output folder
recorder.save_to_file()
# Broadcast/wait until all other neighbors are finished in async algorithm
if args.comm_style == 'swift' and args.memory_efficient:
communicator.wait(model)
print('Finished from Rank %d' % rank)
MPI.COMM_WORLD.Barrier()
sync_allreduce(model, size, MPI.COMM_WORLD)
test_acc = test_accuracy(model, test_loader)
print("rank %d: Test Accuracy %.3f" % (rank, test_acc))
def update_learning_rate(optimizer, epoch, drop, epochs_drop, decay_epoch, itr=None, itr_per_epoch=None):
"""
1) Linearly warmup to reference learning rate (5 epochs)
2) Decay learning rate exponentially starting at decay_epoch
** note: args.lr is the reference learning rate from which to scale up
** note: minimum global batch-size is 256
"""
base_lr = 0.1
lr = args.lr
if args.warmup and epoch < 5: # warmup to scaled lr
if lr > base_lr:
assert itr is not None and itr_per_epoch is not None
count = epoch * itr_per_epoch + itr + 1
incr = (lr - base_lr) * (count / (5 * itr_per_epoch))
lr = base_lr + incr
elif epoch >= decay_epoch:
lr *= np.power(drop, np.floor((1 + epoch - decay_epoch) / epochs_drop))
if lr is not None:
for param_group in optimizer.param_groups:
param_group['lr'] = lr
def sync_allreduce(model, size, comm):
senddata = {}
recvdata = {}
for param in model.parameters():
tmp = param.data.cpu()
senddata[param] = tmp.numpy()
recvdata[param] = np.empty(senddata[param].shape, dtype=senddata[param].dtype)
torch.cuda.synchronize()
comm.Barrier()
for param in model.parameters():
comm.Allreduce(senddata[param], recvdata[param], op=MPI.SUM)
torch.cuda.synchronize()
comm.Barrier()
tensor_list = list()
for param in model.parameters():
tensor_list.append(param)
param.data = torch.Tensor(recvdata[param]).cuda()
param.data = param.data / float(size)
# flatten tensors
initial_model = flatten_tensors(tensor_list).cpu().detach().numpy()
return initial_model
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='PyTorch CIFAR10 Training')
parser.add_argument('--name', '-n', default="default", type=str, help='experiment name')
parser.add_argument('--description', type=str, help='experiment description')
parser.add_argument('--model', default="res", type=str, help='model name: res/VGG/wrn')
parser.add_argument('--comm_style', default='swift', type=str, help='baseline communicator')
parser.add_argument('--resSize', default=50, type=int, help='res net size')
parser.add_argument('--lr', default=0.1, type=float, help='learning rate to start from \
(if not customLR then lr always 0.1)')
parser.add_argument('--momentum', default=0.0, type=float, help='momentum')
parser.add_argument('--epoch', '-e', default=10, type=int, help='total epoch')
parser.add_argument('--bs', default=64, type=int, help='batch size on each worker')
parser.add_argument('--noniid', default=1, type=int, help='use non iid data or not')
parser.add_argument('--degree_noniid', default=0.7, type=float, help='how distributed are labels (0 is random)')
parser.add_argument('--weight_type', default='uniform', type=str, help='how do workers average with each other')
parser.add_argument('--unordered_epochs', default=1, type=int, help='calculate consensus after the first n models')
# Specific async arguments
parser.add_argument('--wb', default=0, type=int, help='proportionally increase neighbor weights or self replace')
parser.add_argument('--memory_efficient', default=0, type=int, help='DO store all neighbor local models')
parser.add_argument('--max_sgd', default=10, type=int, help='max sgd steps per worker')
parser.add_argument('--personalize', default=0, type=int, help='use personalization or not')
parser.add_argument('--i1', default=0, type=int, help='i1 comm set, number of local updates no averaging')
parser.add_argument('--i2', default=1, type=int, help='i2 comm set, number of d-sgd updates')
parser.add_argument('--sgd_steps', default=1, type=int, help='baseline sgd steps per worker')
parser.add_argument('--num_clusters', default=1, type=int, help='number of clusters in graph')
parser.add_argument('--graph', default='ring', type=str, help='graph topology')
parser.add_argument('--warmup', action='store_true', help='use lr warmup or not')
parser.add_argument('--nesterov', action='store_true', help='use nesterov momentum or not')
parser.add_argument('--dataset', default='cifar10', type=str, help='the dataset')
parser.add_argument('--datasetRoot', type=str, help='the path of dataset')
parser.add_argument('--downloadCifar', default=0, type=int, help='change to 1 if needing to download Cifar')
parser.add_argument('--p', '-p', action='store_true', help='partition the dataset or not')
parser.add_argument('--savePath', type=str, help='save path')
parser.add_argument('--outputFolder', default='Output', type=str, help='save folder')
parser.add_argument('--randomSeed', default=9001, type=int, help='random seed')
parser.add_argument('--customLR', default=0, type=int, help='custom learning rate strategy, 1 if using multi-step')
args = parser.parse_args()
if not args.description:
print('Please input an experiment description. Exiting!')
exit()
if not os.path.isdir(args.outputFolder):
os.mkdir(args.outputFolder)
rank = MPI.COMM_WORLD.Get_rank()
size = MPI.COMM_WORLD.Get_size()
run(rank, size)