Skip to content

Latest commit

 

History

History
318 lines (248 loc) · 15.1 KB

README_zh.md

File metadata and controls

318 lines (248 loc) · 15.1 KB

AutoGPTQ

一个基于 GPTQ 算法,简单易用且拥有用户友好型接口的大语言模型量化工具包。

GitHub release PyPI - Downloads

English | 中文

新闻或更新

  • 2023-06-05 - (更新) - 集成 🤗 peft 来使用 gptq 量化过的模型训练适应层,支持 LoRA,AdaLoRA,AdaptionPrompt 等。
  • 2023-05-30 - (更新) - 支持从 🤗 Hub 下载量化好的模型或上次量化好的模型到 🤗 Hub。
  • 2023-05-27 - (更新) - 支持以下模型的量化和推理: gpt_bigcodecodegen 以及 RefineWeb/RefineWebModel(falcon)。
  • 2023-05-04 - (更新) - 支持在 not desc_act or group_size == -1 的情况下使用更快的 cuda 算子。

获取更多的历史信息,请转至这里

性能对比

推理速度

以下结果通过这个脚本生成,文本输入的 batch size 为1,解码策略为 beam search 并且强制模型生成512个 token,速度的计量单位为 tokens/s(越大越好)。

量化模型通过能够最大化推理速度的方式加载。

model GPU num_beams fp16 gptq-int4
llama-7b 1xA100-40G 1 18.87 25.53
llama-7b 1xA100-40G 4 68.79 91.30
moss-moon 16b 1xA100-40G 1 12.48 15.25
moss-moon 16b 1xA100-40G 4 OOM 42.67
moss-moon 16b 2xA100-40G 1 06.83 06.78
moss-moon 16b 2xA100-40G 4 13.10 10.80
gpt-j 6b 1xRTX3060-12G 1 OOM 29.55
gpt-j 6b 1xRTX3060-12G 4 OOM 47.36

困惑度(PPL)

对于困惑度的对比, 你可以参考 这里这里

安装

快速安装

你可以通过 pip 来安装 AutoGPTQ 当前最新的稳定版本:

pip install auto-gptq

从 0.2.0 版本开始,你可以从每次版本发布的资产文件列表中下载预构建好的符合你系统配置情况的轮子文件,并通过安装这些轮子文件来跳过漫长的构建过程以达到最快的安装速度。如下是一个例子:

# 首先,进入轮子文件存放的目录,然后执行下面的命令
pip install auto_gptq-0.2.0+cu118-cp310-cp310-linux_x86_64.whl # 在 linux 操作系统的一个 python=3.10 且 cuda=11.8 的环境下安装 0.2.0 版本的 auto_gptq

取消 cuda 拓展的安装

默认情况下,在 torchcuda 已经于你的机器上被安装时,cuda 拓展将被自动安装,如果你不想要这些拓展的话,采用以下安装命令:

BUILD_CUDA_EXT=0 pip install auto-gptq

同时为确保该拓展——autogptq_cuda 不再存在于你的虚拟环境,执行以下命令:

pip uninstall autogptq_cuda -y

支持使用 triton 加速

若想使用 triton 加速模型推理,使用以下命令:

警告:目前 triton 仅支持 linux 操作系统;当使用 triton 时 3-bit 数值类型的量化将不被支持

pip install auto-gptq[triton]

从源码安装

点击以查看详情

克隆源码:

git clone https://github.com/PanQiWei/AutoGPTQ.git && cd AutoGPTQ

然后,从项目目录安装:

pip install .

正如在快速安装一节,你可以使用 BUILD_CUDA_EXT=0 来取消构建 cuda 拓展。

如果你想要使用 triton 加速且其能够被你的操作系统所支持,请使用 .[triton]

快速开始

量化和推理

警告:这里仅是对 AutoGPTQ 中基本接口的用法展示,只使用了一条文本来量化一个特别小的模型,因此其结果的表现可能不如在大模型上执行量化后预期的那样好。

以下展示了使用 auto_gptq 进行量化和推理的最简单用法:

from transformers import AutoTokenizer, TextGenerationPipeline
from auto_gptq import AutoGPTQForCausalLM, BaseQuantizeConfig


pretrained_model_dir = "facebook/opt-125m"
quantized_model_dir = "opt-125m-4bit"


tokenizer = AutoTokenizer.from_pretrained(pretrained_model_dir, use_fast=True)
examples = [
    tokenizer(
        "auto-gptq is an easy-to-use model quantization library with user-friendly apis, based on GPTQ algorithm."
    )
]

quantize_config = BaseQuantizeConfig(
    bits=4,  # 将模型量化为 4-bit 数值类型
    group_size=128,  # 一般推荐将此参数的值设置为 128
    desc_act=False,  # 设为 False 可以显著提升推理速度,但是 ppl 可能会轻微地变差
)

# 加载未量化的模型,默认情况下,模型总是会被加载到 CPU 内存中
model = AutoGPTQForCausalLM.from_pretrained(pretrained_model_dir, quantize_config)

# 量化模型, 样本的数据类型应该为 List[Dict],其中字典的键有且仅有 input_ids 和 attention_mask
model.quantize(examples)

# 保存量化好的模型
model.save_quantized(quantized_model_dir)

# 使用 safetensors 保存量化好的模型
model.save_quantized(quantized_model_dir, use_safetensors=True)

# 将量化好的模型直接上传至 Hugging Face Hub 
# 当使用 use_auth_token=True 时, 确保你已经首先使用 huggingface-cli login 进行了登录
# 或者可以使用 use_auth_token="hf_xxxxxxx" 来显式地添加账户认证 token
# (取消下面三行代码的注释来使用该功能)
# repo_id = f"YourUserName/{quantized_model_dir}"
# commit_message = f"AutoGPTQ model for {pretrained_model_dir}: {quantize_config.bits}bits, gr{quantize_config.group_size}, desc_act={quantize_config.desc_act}"
# model.push_to_hub(repo_id, commit_message=commit_message, use_auth_token=True)

# 或者你也可以同时将量化好的模型保存到本地并上传至 Hugging Face Hub
# (取消下面三行代码的注释来使用该功能)
# repo_id = f"YourUserName/{quantized_model_dir}"
# commit_message = f"AutoGPTQ model for {pretrained_model_dir}: {quantize_config.bits}bits, gr{quantize_config.group_size}, desc_act={quantize_config.desc_act}"
# model.push_to_hub(repo_id, save_dir=quantized_model_dir, use_safetensors=True, commit_message=commit_message, use_auth_token=True)

# 加载量化好的模型到能被识别到的第一块显卡中
model = AutoGPTQForCausalLM.from_quantized(quantized_model_dir, device="cuda:0")

# 从 Hugging Face Hub 下载量化好的模型并加载到能被识别到的第一块显卡中
# model = AutoGPTQForCausalLM.from_quantized(repo_id, device="cuda:0", use_safetensors=True, use_triton=False)

# 使用 model.generate 执行推理
print(tokenizer.decode(model.generate(**tokenizer("auto_gptq is", return_tensors="pt").to(model.device))[0]))

# 或者使用 TextGenerationPipeline
pipeline = TextGenerationPipeline(model=model, tokenizer=tokenizer)
print(pipeline("auto-gptq is")[0]["generated_text"])

参考 此样例脚本 以了解进阶的用法。

自定义模型

以下展示了如何拓展 `auto_gptq` 以支持 `OPT` 模型,如你所见,这非常简单:
from auto_gptq.modeling import BaseGPTQForCausalLM


class OPTGPTQForCausalLM(BaseGPTQForCausalLM):
    # chained attribute name of transformer layer block
    layers_block_name = "model.decoder.layers"
    # chained attribute names of other nn modules that in the same level as the transformer layer block
    outside_layer_modules = [
        "model.decoder.embed_tokens", "model.decoder.embed_positions", "model.decoder.project_out",
        "model.decoder.project_in", "model.decoder.final_layer_norm"
    ]
    # chained attribute names of linear layers in transformer layer module
    # normally, there are four sub lists, for each one the modules in it can be seen as one operation, 
    # and the order should be the order when they are truly executed, in this case (and usually in most cases), 
    # they are: attention q_k_v projection, attention output projection, MLP project input, MLP project output
    inside_layer_modules = [
        ["self_attn.k_proj", "self_attn.v_proj", "self_attn.q_proj"],
        ["self_attn.out_proj"],
        ["fc1"],
        ["fc2"]
    ]

然后, 你就可以像在基本用法一节中展示的那样使用 OPTGPTQForCausalLM.from_pretrained 和其他方法。

在下游任务上执行评估

你可以使用在 auto_gptq.eval_tasks 中定义的任务来评估量化前后的模型在某个特定下游任务上的表现。

这些预定义的模型支持所有在 🤗 transformers和本项目中被实现了的 causal-language-models。

以下是使用 `cardiffnlp/tweet_sentiment_multilingual` 数据集在序列分类(文本分类)任务上评估 `EleutherAI/gpt-j-6b` 模型的示例:
from functools import partial

import datasets
from transformers import AutoTokenizer, AutoModelForCausalLM, GenerationConfig

from auto_gptq import AutoGPTQForCausalLM, BaseQuantizeConfig
from auto_gptq.eval_tasks import SequenceClassificationTask


MODEL = "EleutherAI/gpt-j-6b"
DATASET = "cardiffnlp/tweet_sentiment_multilingual"
TEMPLATE = "Question:What's the sentiment of the given text? Choices are {labels}.\nText: {text}\nAnswer:"
ID2LABEL = {
    0: "negative",
    1: "neutral",
    2: "positive"
}
LABELS = list(ID2LABEL.values())


def ds_refactor_fn(samples):
    text_data = samples["text"]
    label_data = samples["label"]

    new_samples = {"prompt": [], "label": []}
    for text, label in zip(text_data, label_data):
        prompt = TEMPLATE.format(labels=LABELS, text=text)
        new_samples["prompt"].append(prompt)
        new_samples["label"].append(ID2LABEL[label])

    return new_samples


#  model = AutoModelForCausalLM.from_pretrained(MODEL).eval().half().to("cuda:0")
model = AutoGPTQForCausalLM.from_pretrained(MODEL, BaseQuantizeConfig())
tokenizer = AutoTokenizer.from_pretrained(MODEL)

task = SequenceClassificationTask(
        model=model,
        tokenizer=tokenizer,
        classes=LABELS,
        data_name_or_path=DATASET,
        prompt_col_name="prompt",
        label_col_name="label",
        **{
            "num_samples": 1000,  # how many samples will be sampled to evaluation
            "sample_max_len": 1024,  # max tokens for each sample
            "block_max_len": 2048,  # max tokens for each data block
            # function to load dataset, one must only accept data_name_or_path as input 
            # and return datasets.Dataset
            "load_fn": partial(datasets.load_dataset, name="english"),  
            # function to preprocess dataset, which is used for datasets.Dataset.map, 
            # must return Dict[str, list] with only two keys: [prompt_col_name, label_col_name]
            "preprocess_fn": ds_refactor_fn,  
            # truncate label when sample's length exceed sample_max_len
            "truncate_prompt": False  
        }
    )

# note that max_new_tokens will be automatically specified internally based on given classes
print(task.run())

# self-consistency
print(
    task.run(
        generation_config=GenerationConfig(
            num_beams=3,
            num_return_sequences=3,
            do_sample=True
        )
    )
)

了解更多

教程 提供了将 auto_gptq 集成到你的项目中的手把手指导和最佳实践准则。

示例 提供了大量示例脚本以将 auto_gptq 用于不同领域。

支持的模型

你可以使用 model.config.model_type 来对照下表以检查你正在使用的一个模型是否被 auto_gptq 所支持。

比如, WizardLMvicunagpt4all 模型的 model_type 皆为 llama, 因此这些模型皆被 auto_gptq 所支持。

model type quantization inference peft-lora peft-ada-lora peft-adaption_prompt
bloom
gpt2
gpt_neox 要求该分支的 peft
gptj 要求该分支的 peft
llama
moss 要求该分支的 peft
opt
gpt_bigcode
codegen
falcon(RefinedWebModel/RefinedWeb)

支持的评估任务

目前, auto_gptq 支持以下评估任务: LanguageModelingTask, SequenceClassificationTaskTextSummarizationTask;更多的评估任务即将到来!

致谢

  • 特别感谢 Elias FrantarSaleh AshkboosTorsten HoeflerDan Alistarh 提出 GPTQ 算法并开源代码
  • 特别感谢 qwopqwop200, 本项目中涉及到模型量化的代码主要参考自 GPTQ-for-LLaMa

Star History Chart