-
Notifications
You must be signed in to change notification settings - Fork 1
/
model.py
81 lines (53 loc) · 2.05 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Sun May 5 21:17:44 2019
@author: weikaikong
"""
import numpy as np
import cv2
from keras.preprocessing import image
import time
face_cascade = cv2.CascadeClassifier('haarcascade_frontalface_default.xml')
from keras.models import model_from_json
model = model_from_json(open("data/model_structure.json", "r").read())
model.load_weights('data/weights.h5')
#-----------------------------
emotions = ('angry', 'disgust', 'fear', 'happy', 'sad', 'surprise', 'neutral')
cap = cv2.VideoCapture(0)
frame = 0
while(True):
ret, img = cap.read()
img = cv2.resize(img, (640, 360))
img = img[0:308,:]
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
faces = face_cascade.detectMultiScale(gray, 1.3, 5)
for (x,y,w,h) in faces:
if w > 130:
detected_face = img[int(y):int(y+h), int(x):int(x+w)] #crop detected face
detected_face = cv2.cvtColor(detected_face, cv2.COLOR_BGR2GRAY) #transform to gray scale
detected_face = cv2.resize(detected_face, (48, 48)) #resize to 48x48
img_pixels = image.img_to_array(detected_face)
img_pixels = np.expand_dims(img_pixels, axis = 0)
img_pixels /= 255
predictions = model.predict(img_pixels) #store probabilities of 7 expressions
max_index = np.argmax(predictions[0])
overlay = img.copy()
opacity = 0.4
cv2.rectangle(img,(x+w+10,y-25),(x+w+150,y+115),(64,64,64),cv2.FILLED)
cv2.addWeighted(overlay, opacity, img, 1 - opacity, 0, img)
cv2.line(img,(int((x+x+w)/2),y+15),(x+w,y-20),(255,255,255),1)
cv2.line(img,(x+w,y-20),(x+w+10,y-20),(255,255,255),1)
emotion = ""
for i in range(len(predictions[0])):
emotion = "%s %s%s" % (emotions[i], round(predictions[0][i]*100, 2), '%')
color = (255,255,255)
cv2.putText(img, emotion, (int(x+w+15), int(y-12+i*20)), cv2.FONT_HERSHEY_SIMPLEX, 0.5, color, 1)
#-------------------------
cv2.imshow('img',img)
frame = frame + 1
#---------------------------------
if cv2.waitKey(1) & 0xFF == ord('q'):
break
cap.release()
cv2.destroyAllWindows()