-
Notifications
You must be signed in to change notification settings - Fork 39
/
Copy path1123. Lowest Common Ancestor of Deepest Leaves.js
74 lines (73 loc) · 1.9 KB
/
1123. Lowest Common Ancestor of Deepest Leaves.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
const lowestCommonAncestor = function (root, p, q) {
const f = new Map(); const d = new Map()
const t = 20
const bfs = () => {
f.set(root, Array(t + 1).fill(root))
const q = [root]
d.set(root, 1)
while (q.length) {
const x = q.pop()
for (const y of [x.left, x.right]) {
if (!y) continue
d.set(y, d.get(x) + 1)
// console.log(x.val, y.val, d[x], d[y])
const fy = []
fy[0] = x
for (let j = 1; j <= t; j++) {
fy[j] = f.get(fy[j - 1])[j - 1]
}
f.set(y, fy)
q.push(y)
}
}
}
const lca = (p, q) => {
// d[p] <= d[q], q 向上调整
if (d.get(p) > d.get(q)) [p, q] = [q, p]
for (let i = t; i >= 0; i--) {
if (d.get(f.get(q)[i]) >= d.get(p)) q = f.get(q)[i]
}
if (p === q) return p
for (let i = t; i >= 0; i--) {
if (f.get(p)[i] !== f.get(q)[i]) p = f.get(p)[i], q = f.get(q)[i]
}
return f.get(p)[0]
}
bfs()
return lca(p, q)
}
/**
* Definition for a binary tree node.
* function TreeNode(val, left, right) {
* this.val = (val===undefined ? 0 : val)
* this.left = (left===undefined ? null : left)
* this.right = (right===undefined ? null : right)
* }
*/
/**
* @param {TreeNode} root
* @return {TreeNode}
*/
const lcaDeepestLeaves = function (root) {
const getDepth = (node) => {
if (!node) return 0
return Math.max(getDepth(node.left), getDepth(node.right)) + 1
}
const depth = getDepth(root)
const deepestLeaves = []
const dfs = (node, d = 1) => {
if (!node) return
if (!node.left && !node.right) {
if (d === depth) deepestLeaves.push(node)
return
}
dfs(node.left, d + 1)
dfs(node.right, d + 1)
}
dfs(root)
while (deepestLeaves.length > 1) {
const [a, b] = [deepestLeaves.pop(), deepestLeaves.pop()]
deepestLeaves.push(lowestCommonAncestor(root, a, b))
}
return deepestLeaves[0]
}