-
Notifications
You must be signed in to change notification settings - Fork 39
/
Copy path1851. Minimum Interval to Include Each Query.ts
517 lines (462 loc) · 13.6 KB
/
1851. Minimum Interval to Include Each Query.ts
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
export {}
class Heap<T=number> {
data: Array<T | null>
lt: (i: number, j: number) => boolean
constructor ()
constructor (data: T[])
constructor (cmp: (lhs: T, rhs: T) => boolean)
constructor (data: T[], cmp: (lhs: T, rhs: T) => boolean)
constructor (data: (T[] | ((lhs: T, rhs: T) => boolean)), cmp: (lhs: T, rhs: T) => boolean)
constructor (data: (T[] | ((lhs: T, rhs: T) => boolean)) = [], cmp = (lhs: T, rhs: T) => lhs < rhs) {
if (typeof data === 'function') {
cmp = data
data = []
}
this.data = [null, ...data]
this.lt = (i, j) => cmp(this.data[i]!, this.data[j]!)
for (let i = this.size(); i > 0; i--) this.heapify(i)
}
size (): number {
return this.data.length - 1
}
push (v: T): void {
this.data.push(v)
let i = this.size()
while ((i >> 1 !== 0) && this.lt(i, i >> 1)) this.swap(i, i >>= 1)
}
pop (): T {
this.swap(1, this.size())
const top = this.data.pop()
this.heapify(1)
return top!
}
top (): T { return this.data[1]! }
heapify (i: number): void {
while (true) {
let min = i
const [l, r, n] = [i * 2, i * 2 + 1, this.data.length]
if (l < n && this.lt(l, min)) min = l
if (r < n && this.lt(r, min)) min = r
if (min !== i) {
this.swap(i, min); i = min
} else break
}
}
swap (i: number, j: number): void {
const d = this.data;
[d[i], d[j]] = [d[j], d[i]]
}
}
class RBTreeNode<T=number> {
data: T
left: RBTreeNode<T> | null
right: RBTreeNode<T>| null
parent: RBTreeNode<T>| null
color: number
constructor (data: T) {
this.data = data
this.left = this.right = this.parent = null
this.color = 0
}
sibling (): RBTreeNode<T> | null {
if (!this.parent) return null // sibling null if no parent
return this.isOnLeft() ? this.parent.right : this.parent.left
}
isOnLeft (): boolean { return this === this.parent!.left }
hasRedChild (): boolean {
return Boolean(this.left && this.left.color === 0) || Boolean(this.right && this.right.color === 0)
}
}
class RBTree<T> {
root: RBTreeNode<T> | null
compare: (l: T, r: T) => boolean
constructor (compare = (l: T, r: T) => l < r) {
this.root = null
this.compare = compare
}
rotateLeft (pt: RBTreeNode<T>): void {
const right = pt.right!
pt.right = right.left
if (pt.right) pt.right.parent = pt
right.parent = pt.parent
if (!pt.parent) this.root = right
else if (pt === pt.parent.left) pt.parent.left = right
else pt.parent.right = right
right.left = pt
pt.parent = right
}
rotateRight (pt: RBTreeNode<T>): void {
const left = pt.left!
pt.left = left.right
if (pt.left) pt.left.parent = pt
left.parent = pt.parent
if (!pt.parent) this.root = left
else if (pt === pt.parent.left) pt.parent.left = left
else pt.parent.right = left
left.right = pt
pt.parent = left
}
swapColor (p1: RBTreeNode<T>, p2: RBTreeNode<T>): void {
const tmp = p1.color
p1.color = p2.color
p2.color = tmp
}
swapData (p1: RBTreeNode<T>, p2: RBTreeNode<T>): void {
const tmp = p1.data
p1.data = p2.data
p2.data = tmp
}
fixAfterInsert (pt: RBTreeNode<T>): void {
let parent = null
let grandParent = null
while (pt !== this.root && pt.color !== 1 && pt.parent?.color === 0) {
parent = pt.parent
grandParent = pt.parent.parent
/* Case : A
Parent of pt is left child of Grand-parent of pt */
if (parent === grandParent?.left) {
const uncle = grandParent.right
/* Case : 1
The uncle of pt is also red
Only Recoloring required */
if (uncle && uncle.color === 0) {
grandParent.color = 0
parent.color = 1
uncle.color = 1
pt = grandParent
} else {
/* Case : 2
pt is right child of its parent
Left-rotation required */
if (pt === parent.right) {
this.rotateLeft(parent)
pt = parent
parent = pt.parent
}
/* Case : 3
pt is left child of its parent
Right-rotation required */
this.rotateRight(grandParent)
this.swapColor(parent!, grandParent)
pt = parent!
}
}
/* Case : B
Parent of pt is right child of Grand-parent of pt */
else {
const uncle = grandParent!.left
/* Case : 1
The uncle of pt is also red
Only Recoloring required */
if ((uncle != null) && (uncle.color === 0)) {
grandParent!.color = 0
parent.color = 1
uncle.color = 1
pt = grandParent!
} else {
/* Case : 2
pt is left child of its parent
Right-rotation required */
if (pt === parent.left) {
this.rotateRight(parent)
pt = parent
parent = pt.parent
}
/* Case : 3
pt is right child of its parent
Left-rotation required */
this.rotateLeft(grandParent!)
this.swapColor(parent!, grandParent!)
pt = parent!
}
}
}
this.root!.color = 1
}
deleteByValue (val: T): boolean {
const node = this.search(val)
if (node?.data !== val) return false
this.deleteNode(node)
return true
}
// searches for given value
// if found returns the node (used for delete)
// else returns the last node while traversing (used in insert)
search (val: T): RBTreeNode<T> | null {
let p = this.root
while (p) {
if (this.compare(val, p.data)) {
if (!p.left) break
else p = p.left
} else if (this.compare(p.data, val)) {
if (!p.right) break
else p = p.right
} else break
}
return p
}
deleteNode (v: RBTreeNode<T>): void {
const u = BSTreplace(v)
// True when u and v are both black
const uvBlack = (u === null || u.color === 1) && v.color === 1
const parent = v.parent!
if (!u) {
// u is null therefore v is leaf
if (v === this.root) this.root = null // v is root, making root null
else {
if (uvBlack) {
// u and v both black
// v is leaf, fix double black at v
this.fixDoubleBlack(v)
} else {
// u or v is red
if (v.sibling())
// sibling is not null, make it red"
{ v.sibling()!.color = 0 }
}
// delete v from the tree
if (v.isOnLeft()) parent.left = null
else parent.right = null
}
return
}
if (!v.left || !v.right) {
// v has 1 child
if (v === this.root) {
// v is root, assign the value of u to v, and delete u
v.data = u.data
v.left = v.right = null
} else {
// Detach v from tree and move u up
if (v.isOnLeft()) parent.left = u
else parent.right = u
u.parent = parent
if (uvBlack) this.fixDoubleBlack(u) // u and v both black, fix double black at u
else u.color = 1 // u or v red, color u black
}
return
}
// v has 2 children, swap data with successor and recurse
this.swapData(u, v)
this.deleteNode(u)
// find node that replaces a deleted node in BST
function BSTreplace (x: RBTreeNode<T>): RBTreeNode<T> | null {
// when node have 2 children
if (x.left && x.right) return successor(x.right)
// when leaf
if (!x.left && !x.right) return null
// when single child
return x.left ?? x.right
}
// find node that do not have a left child
// in the subtree of the given node
function successor (x: RBTreeNode<T>): RBTreeNode<T> {
let temp = x
while (temp.left) temp = temp.left
return temp
}
}
fixDoubleBlack (x: RBTreeNode<T>): void {
if (x === this.root) return // Reached root
const sibling = x.sibling(); const parent = x.parent!
if (!sibling) {
// No sibiling, double black pushed up
this.fixDoubleBlack(parent)
} else {
if (sibling.color === 0) {
// Sibling red
parent.color = 0
sibling.color = 1
if (sibling.isOnLeft()) this.rotateRight(parent) // left case
else this.rotateLeft(parent) // right case
this.fixDoubleBlack(x)
} else {
// Sibling black
if (sibling.hasRedChild()) {
// at least 1 red children
if (sibling.left && sibling.left.color === 0) {
if (sibling.isOnLeft()) {
// left left
sibling.left.color = sibling.color
sibling.color = parent.color
this.rotateRight(parent)
} else {
// right left
sibling.left.color = parent.color
this.rotateRight(sibling)
this.rotateLeft(parent)
}
} else {
if (sibling.isOnLeft()) {
// left right
sibling.right!.color = parent.color
this.rotateLeft(sibling)
this.rotateRight(parent)
} else {
// right right
sibling.right!.color = sibling.color
sibling.color = parent.color
this.rotateLeft(parent)
}
}
parent.color = 1
} else {
// 2 black children
sibling.color = 0
if (parent.color === 1) this.fixDoubleBlack(parent)
else parent.color = 1
}
}
}
}
insert (data: T): boolean {
const node = new RBTreeNode(data)
const parent = this.search(data)
if (!parent) this.root = node
else if (this.compare(node.data, parent.data)) parent.left = node
else if (this.compare(parent.data, node.data)) parent.right = node
else return false
node.parent = parent
this.fixAfterInsert(node)
return true
}
find (data: T): RBTreeNode<T> | null {
const node = this.search(data)
return node && node.data === data ? node : null
}
* inOrder (root: RBTreeNode<T> = this.root!): Generator<T, void, void> {
if (!root) return
for (const v of this.inOrder(root.left!)) yield v
yield root.data
for (const v of this.inOrder(root.right!)) yield v
}
}
class TreeMultiSet<T = number> {
#size: number
tree: RBTree<T>
counts: Map<T, number>
compare: (l: T, r: T) => boolean
constructor (collection: T[] = [], compare = (l: T, r: T) => l < r) {
this.#size = 0
this.tree = new RBTree(compare)
this.counts = new Map()
this.compare = compare
for (const val of collection) this.add(val)
}
size (): number {
return this.#size
}
has (val: T): boolean {
return !!this.tree.find(val)
}
add (val: T): void {
console.log('add', val)
this.tree.insert(val)
this.increase(val)
this.#size++
}
delete (val: T): void {
console.log('delete', val)
this.decrease(val)
if (this.count(val) === 0) {
this.tree.deleteByValue(val)
}
this.#size--
}
count (val: T): number {
return this.counts.get(val) ?? 0
}
ceiling (val: T): T | undefined {
let p = this.tree.root
let higher = null
while (p) {
if (!this.compare(p.data, val)) {
higher = p
p = p.left
} else {
p = p.right
}
}
return higher?.data
}
floor (val: T): T | undefined {
let p = this.tree.root
let lower = null
while (p) {
if (!this.compare(val, p.data)) {
lower = p
p = p.right
} else {
p = p.left
}
}
return lower?.data
}
higher (val: T): T | undefined {
let p = this.tree.root
let higher = null
while (p) {
if (this.compare(val, p.data)) {
higher = p
p = p.left
} else {
p = p.right
}
}
return higher?.data
}
lower (val: T): T | undefined {
let p = this.tree.root
let lower = null
while (p) {
if (this.compare(p.data, val)) {
lower = p
p = p.right
} else {
p = p.left
}
}
return lower?.data
}
* keys (): Generator<T, void, void> {
for (const val of this.values()) yield val
}
* values (): Generator<T, void, void> {
for (const val of this.tree.inOrder()) {
let count = this.count(val)
while (count--) yield val
}
}
decrease (val: T): void {
this.counts.set(val, this.count(val) - 1)
}
increase (val: T): void {
this.counts.set(val, this.count(val) + 1)
}
}
/*
将 queries 从小到大排序,处理查询的时候将所有开始时间 <= 查询的入堆,然后将所有结束时间 < 查询的出堆,堆里面的就是满足情况的区间。因此我们也要将 intervals 按照开始时间从小到大排序;有点类似单调队列
*/
function minInterval (intervals: number[][], queries: number[]): number[] {
intervals.sort((a, b) => a[0] - b[0])
const [n, m] = [intervals.length, queries.length]
const idx = [...Array(m)].map((_, idx) => idx)
const ans = Array<number>(m).fill(-1)
idx.sort((i, j) => queries[i] - queries[j])
const heap = new Heap((i, j) => intervals[i][1] < intervals[j][1])
const set = new TreeMultiSet()
for (let i = 0, j = 0; i < m; i++) {
while (j < n && intervals[j][0] <= queries[idx[i]]) {
set.add(intervals[j][1] - intervals[j][0] + 1)
heap.push(j++)
}
while (heap.size() && intervals[heap.top()][1] < queries[idx[i]]) {
const k = heap.pop()
set.delete(intervals[k][1] - intervals[k][0] + 1)
}
if (heap.size()) {
ans[idx[i]] = Number(set.values().next().value)
}
}
return ans
};