-
Notifications
You must be signed in to change notification settings - Fork 48
/
constants.py
378 lines (353 loc) · 14.7 KB
/
constants.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
import os
from pathlib import Path
from data_pipeline.config import settings
from data_pipeline.score import field_names
## note: to keep map porting "right" fields, keeping descriptors the same.
# Base Paths
DATA_PATH = Path(settings.APP_ROOT) / "data"
TMP_PATH = DATA_PATH / "tmp"
FILES_PATH = Path(settings.APP_ROOT) / "files"
# Remote Paths
CENSUS_COUNTIES_ZIP_URL = "https://www2.census.gov/geo/docs/maps-data/data/gazetteer/Gaz_counties_national.zip"
# Local Paths
CENSUS_COUNTIES_FILE_NAME = TMP_PATH / "Gaz_counties_national.txt"
# Census paths
DATA_CENSUS_DIR = DATA_PATH / "census"
DATA_CENSUS_CSV_DIR = DATA_CENSUS_DIR / "csv"
DATA_CENSUS_CSV_FILE_PATH = DATA_CENSUS_CSV_DIR / "us.csv"
DATA_CENSUS_CSV_STATE_FILE_PATH = DATA_CENSUS_CSV_DIR / "fips_states_2010.csv"
# Score paths
DATA_SCORE_DIR = DATA_PATH / "score"
## Score CSV Paths
DATA_SCORE_CSV_DIR = DATA_SCORE_DIR / "csv"
DATA_SCORE_CSV_FULL_DIR = DATA_SCORE_CSV_DIR / "full"
DATA_SCORE_CSV_FULL_FILE_PATH = DATA_SCORE_CSV_FULL_DIR / "usa.csv"
FULL_SCORE_CSV_FULL_PLUS_COUNTIES_FILE_PATH = (
DATA_SCORE_CSV_FULL_DIR / "usa_counties.csv"
)
# Score Tile CSV source path
DATA_SCORE_CSV_TILES_PATH = DATA_SCORE_CSV_DIR / "tiles"
DATA_SCORE_CSV_TILES_FILE_PATH = DATA_SCORE_CSV_TILES_PATH / "usa.csv"
DATA_SCORE_JSON_INDEX_FILE_PATH = (
DATA_SCORE_CSV_TILES_PATH / "tile_indexes.json"
)
## Tile path
DATA_SCORE_TILES_DIR = DATA_SCORE_DIR / "tiles"
# Downloadable paths
if not os.environ.get("J40_VERSION_LABEL_STRING"):
version_str = "beta"
else:
version_str = os.environ.get("J40_VERSION_LABEL_STRING")
SCORE_DOWNLOADABLE_DIR = DATA_SCORE_DIR / "downloadable"
SCORE_DOWNLOADABLE_PDF_FILE_NAME = "draft-communities-list.pdf"
SCORE_DOWNLOADABLE_PDF_FILE_PATH = FILES_PATH / SCORE_DOWNLOADABLE_PDF_FILE_NAME
SCORE_DOWNLOADABLE_TSD_FILE_NAME = "cejst-technical-support-document.pdf"
SCORE_DOWNLOADABLE_TSD_FILE_PATH = FILES_PATH / SCORE_DOWNLOADABLE_TSD_FILE_NAME
SCORE_DOWNLOADABLE_CSV_FILE_PATH = (
SCORE_DOWNLOADABLE_DIR / f"{version_str}-communities.csv"
)
SCORE_DOWNLOADABLE_EXCEL_FILE_PATH = (
SCORE_DOWNLOADABLE_DIR / f"{version_str}-communities.xlsx"
)
SCORE_DOWNLOADABLE_CODEBOOK_FILE_PATH = (
SCORE_DOWNLOADABLE_DIR / f"{version_str}-codebook.csv"
)
SCORE_DOWNLOADABLE_CSV_ZIP_FILE_PATH = (
SCORE_DOWNLOADABLE_DIR / f"{version_str}-communities-csv.zip"
)
SCORE_DOWNLOADABLE_XLS_ZIP_FILE_PATH = (
SCORE_DOWNLOADABLE_DIR / f"{version_str}-communities-xls.zip"
)
SCORE_VERSIONING_DATA_DOCUMENTATION_ZIP_FILE_PATH = (
SCORE_DOWNLOADABLE_DIR / f"{version_str}-data-documentation.zip"
)
SCORE_VERSIONING_SHAPEFILE_CODEBOOK_FILE_PATH = (
SCORE_DOWNLOADABLE_DIR / f"{version_str}-shapefile-codebook.zip"
)
SCORE_VERSIONING_README_FILE_NAME = f"readme-version-{version_str}.md"
SCORE_VERSIONING_README_FILE_PATH = (
FILES_PATH / SCORE_VERSIONING_README_FILE_NAME
)
# For the codebook
CEJST_SCORE_COLUMN_NAME = "score_name"
CSV_FORMAT = "csv_format"
CSV_LABEL_FIELD = "csv_label"
EXCEL_LABEL_FIELD = "excel_label"
NOTES_FIELD = "notes"
THRESHOLD_CATEGORY_FIELD = "threshold_category"
CALCULATION_NOTES_FIELD = "calculation_notes"
CSV_FIELD_TYPE_FIELD = "csv_field_type"
CODEBOOK_COLUMNS = [
CSV_LABEL_FIELD,
EXCEL_LABEL_FIELD,
CEJST_SCORE_COLUMN_NAME,
CSV_FIELD_TYPE_FIELD,
CALCULATION_NOTES_FIELD,
THRESHOLD_CATEGORY_FIELD,
NOTES_FIELD,
]
LOSS_RATE_STRING = "loss rate"
LOW_STRING = "Low "
ISLAND_STRING = "island areas"
PERCENTILE_EXPLANATION = (
"All percentiles are floored (rounded down to the nearest percentile). "
+ "For example, 89.7th percentile is rounded down to 89 for this field."
)
LOW_PERCENTILE_EXPLANATION = "This percentile is reversed, meaning the lowest raw numbers become the highest percentiles."
ISLAND_AREAS_EXPLANATION = (
"Because not all data is available for the Nation, Puerto Rico, "
+ "and the Island Areas, this uses different underlying data for the island areas."
)
# Column subsets
CENSUS_COUNTIES_COLUMNS = ["USPS", "GEOID", "NAME"]
# Drop FIPS codes from map
DROP_FIPS_CODES = []
# Drop FIPS codes from incrementing
DROP_FIPS_FROM_NON_WTD_THRESHOLDS = "72"
# Percent prefixes for rounding
PERCENT_PREFIXES_SUFFIXES = [
"Percent",
"percent",
"Percentage",
"Energy burden",
"greater than or equal to 18 years",
field_names.PERCENTILE_FIELD_SUFFIX,
]
TILES_ROUND_NUM_DECIMALS = 2
# The following constants and fields get used by the front end to change the side panel.
# The islands, Puerto Rico and the nation all have different
# data available, and as a consequence, show a different number of fields.
# Controlling Tile user experience columns
THRESHOLD_COUNT_TO_SHOW_FIELD_NAME = "THRHLD"
TILES_ISLAND_AREAS_THRESHOLD_COUNT = 3
TILES_PUERTO_RICO_THRESHOLD_COUNT = 10
TILES_NATION_THRESHOLD_COUNT = 21
# Note that the FIPS code is a string
# The FIPS codes listed are:
# 60: American Samoa, 66: Guam, 69: N. Mariana Islands, 78: US Virgin Islands
TILES_ISLAND_AREA_FIPS_CODES = ["60", "66", "69", "78"]
TILES_PUERTO_RICO_FIPS_CODE = ["72"]
TILES_ALASKA_AND_HAWAII_FIPS_CODE = ["02", "15"]
TILES_CONTINENTAL_US_FIPS_CODE = [
"01",
"04",
"05",
"06",
"08",
"09",
"10",
"11",
"12",
"13",
"16",
"17",
"18",
"19",
"20",
"21",
"22",
"23",
"24",
"25",
"26",
"27",
"28",
"29",
"30",
"31",
"32",
"33",
"34",
"35",
"36",
"37",
"38",
"39",
"40",
"41",
"42",
"44",
"45",
"46",
"47",
"48",
"49",
"50",
"51",
"53",
"54",
"55",
"56",
]
# Constant to reflect UI Experience version
# "Nation" referring to 50 states and DC is from Census
USER_INTERFACE_EXPERIENCE_FIELD_NAME = "UI_EXP"
NATION_USER_EXPERIENCE = "Nation"
PUERTO_RICO_USER_EXPERIENCE = "Puerto Rico"
ISLAND_AREAS_USER_EXPERIENCE = "Island Areas"
# FEMA rounding columns
FEMA_ROUND_NUM_COLUMNS = [
field_names.EXPECTED_BUILDING_LOSS_RATE_FIELD,
field_names.EXPECTED_AGRICULTURE_LOSS_RATE_FIELD,
field_names.EXPECTED_POPULATION_LOSS_RATE_FIELD,
]
TILES_FEMA_ROUND_NUM_DECIMALS = 4
# Tiles data: full field name, tile index name
TILES_SCORE_COLUMNS = {
field_names.GEOID_TRACT_FIELD: "GTF",
field_names.STATE_FIELD: "SF",
field_names.COUNTY_FIELD: "CF",
field_names.DIABETES_FIELD + field_names.PERCENTILE_FIELD_SUFFIX: "DF_PFS",
field_names.ASTHMA_FIELD + field_names.PERCENTILE_FIELD_SUFFIX: "AF_PFS",
field_names.HEART_DISEASE_FIELD
+ field_names.PERCENTILE_FIELD_SUFFIX: "HDF_PFS",
field_names.DIESEL_FIELD + field_names.PERCENTILE_FIELD_SUFFIX: "DSF_PFS",
field_names.ENERGY_BURDEN_FIELD
+ field_names.PERCENTILE_FIELD_SUFFIX: "EBF_PFS",
field_names.EXPECTED_AGRICULTURE_LOSS_RATE_FIELD
+ field_names.PERCENTILE_FIELD_SUFFIX: "EALR_PFS",
field_names.EXPECTED_BUILDING_LOSS_RATE_FIELD
+ field_names.PERCENTILE_FIELD_SUFFIX: "EBLR_PFS",
field_names.EXPECTED_POPULATION_LOSS_RATE_FIELD
+ field_names.PERCENTILE_FIELD_SUFFIX: "EPLR_PFS",
field_names.HOUSING_BURDEN_FIELD
+ field_names.PERCENTILE_FIELD_SUFFIX: "HBF_PFS",
field_names.LOW_LIFE_EXPECTANCY_FIELD
+ field_names.PERCENTILE_FIELD_SUFFIX: "LLEF_PFS",
field_names.LINGUISTIC_ISO_FIELD
+ field_names.PERCENTILE_FIELD_SUFFIX: "LIF_PFS",
field_names.LOW_MEDIAN_INCOME_AS_PERCENT_OF_AMI_FIELD
+ field_names.PERCENTILE_FIELD_SUFFIX: "LMI_PFS",
field_names.PM25_FIELD + field_names.PERCENTILE_FIELD_SUFFIX: "PM25F_PFS",
field_names.HIGH_SCHOOL_ED_FIELD: "HSEF",
field_names.POVERTY_LESS_THAN_100_FPL_FIELD
+ field_names.PERCENTILE_FIELD_SUFFIX: "P100_PFS",
field_names.POVERTY_LESS_THAN_200_FPL_IMPUTED_FIELD
+ field_names.PERCENTILE_FIELD_SUFFIX: "P200_I_PFS",
field_names.FPL_200_SERIES_IMPUTED_AND_ADJUSTED_DONUTS: "AJDLI_ET",
field_names.LEAD_PAINT_FIELD
+ field_names.PERCENTILE_FIELD_SUFFIX: "LPF_PFS",
field_names.NO_KITCHEN_OR_INDOOR_PLUMBING_FIELD
+ field_names.PERCENTILE_FIELD_SUFFIX: "KP_PFS",
field_names.NPL_FIELD + field_names.PERCENTILE_FIELD_SUFFIX: "NPL_PFS",
field_names.RMP_FIELD + field_names.PERCENTILE_FIELD_SUFFIX: "RMP_PFS",
field_names.TSDF_FIELD + field_names.PERCENTILE_FIELD_SUFFIX: "TSDF_PFS",
field_names.TOTAL_POP_FIELD: "TPF",
field_names.TRAFFIC_FIELD + field_names.PERCENTILE_FIELD_SUFFIX: "TF_PFS",
field_names.UNEMPLOYMENT_FIELD
+ field_names.PERCENTILE_FIELD_SUFFIX: "UF_PFS",
field_names.WASTEWATER_FIELD
+ field_names.PERCENTILE_FIELD_SUFFIX: "WF_PFS",
field_names.UST_FIELD + field_names.PERCENTILE_FIELD_SUFFIX: "UST_PFS",
field_names.N_WATER: "N_WTR",
field_names.N_WORKFORCE: "N_WKFC",
field_names.N_CLIMATE: "N_CLT",
field_names.N_ENERGY: "N_ENY",
field_names.N_TRANSPORTATION: "N_TRN",
field_names.N_HOUSING: "N_HSG",
field_names.N_POLLUTION: "N_PLN",
field_names.N_HEALTH: "N_HLTH",
# temporarily update this so that it's the Narwhal score that gets visualized on the map
# The NEW final score value INCLUDES the adjacency index.
field_names.FINAL_SCORE_N_BOOLEAN: "SN_C",
field_names.IS_TRIBAL_DAC: "SN_T",
field_names.DIABETES_LOW_INCOME_FIELD: "DLI",
field_names.ASTHMA_LOW_INCOME_FIELD: "ALI",
field_names.POVERTY_LOW_HS_EDUCATION_FIELD: "PLHSE",
field_names.LOW_MEDIAN_INCOME_LOW_HS_EDUCATION_FIELD: "LMILHSE",
field_names.UNEMPLOYMENT_LOW_HS_EDUCATION_FIELD: "ULHSE",
# new booleans only for the environmental factors
field_names.EXPECTED_POPULATION_LOSS_EXCEEDS_PCTILE_THRESHOLD: "EPL_ET",
field_names.EXPECTED_AGRICULTURAL_LOSS_EXCEEDS_PCTILE_THRESHOLD: "EAL_ET",
field_names.EXPECTED_BUILDING_LOSS_EXCEEDS_PCTILE_THRESHOLD: "EBL_ET",
field_names.ENERGY_BURDEN_EXCEEDS_PCTILE_THRESHOLD: "EB_ET",
field_names.PM25_EXCEEDS_PCTILE_THRESHOLD: "PM25_ET",
field_names.DIESEL_EXCEEDS_PCTILE_THRESHOLD: "DS_ET",
field_names.TRAFFIC_PROXIMITY_PCTILE_THRESHOLD: "TP_ET",
field_names.LEAD_PAINT_PROXY_PCTILE_THRESHOLD: "LPP_ET",
field_names.HISTORIC_REDLINING_SCORE_EXCEEDED: "HRS_ET",
field_names.NO_KITCHEN_OR_INDOOR_PLUMBING_PCTILE_THRESHOLD: "KP_ET",
field_names.HOUSING_BURDEN_PCTILE_THRESHOLD: "HB_ET",
field_names.RMP_PCTILE_THRESHOLD: "RMP_ET",
field_names.NPL_PCTILE_THRESHOLD: "NPL_ET",
field_names.TSDF_PCTILE_THRESHOLD: "TSDF_ET",
field_names.WASTEWATER_PCTILE_THRESHOLD: "WD_ET",
field_names.UST_PCTILE_THRESHOLD: "UST_ET",
field_names.DIABETES_PCTILE_THRESHOLD: "DB_ET",
field_names.ASTHMA_PCTILE_THRESHOLD: "A_ET",
field_names.HEART_DISEASE_PCTILE_THRESHOLD: "HD_ET",
field_names.LOW_LIFE_EXPECTANCY_PCTILE_THRESHOLD: "LLE_ET",
field_names.UNEMPLOYMENT_PCTILE_THRESHOLD: "UN_ET",
field_names.LINGUISTIC_ISOLATION_PCTILE_THRESHOLD: "LISO_ET",
field_names.POVERTY_PCTILE_THRESHOLD: "POV_ET",
field_names.LOW_MEDIAN_INCOME_PCTILE_THRESHOLD: "LMI_ET",
field_names.ISLAND_LOW_MEDIAN_INCOME_PCTILE_THRESHOLD: "IA_LMI_ET",
field_names.ISLAND_UNEMPLOYMENT_PCTILE_THRESHOLD: "IA_UN_ET",
field_names.ISLAND_POVERTY_PCTILE_THRESHOLD: "IA_POV_ET",
field_names.THRESHOLD_COUNT: "TC",
field_names.CATEGORY_COUNT: "CC",
field_names.ISLAND_AREAS_UNEMPLOYMENT_LOW_HS_EDUCATION_FIELD: "IAULHSE",
field_names.ISLAND_AREAS_POVERTY_LOW_HS_EDUCATION_FIELD: "IAPLHSE",
field_names.ISLAND_AREAS_LOW_MEDIAN_INCOME_LOW_HS_EDUCATION_FIELD: "IALMILHSE",
# Percentiles for Island areas' workforce columns
field_names.LOW_CENSUS_DECENNIAL_AREA_MEDIAN_INCOME_PERCENT_FIELD_2009
+ field_names.PERCENTILE_FIELD_SUFFIX: "IALMILHSE_PFS",
field_names.CENSUS_DECENNIAL_POVERTY_LESS_THAN_100_FPL_FIELD_2009
+ field_names.ISLAND_AREAS_PERCENTILE_ADJUSTMENT_FIELD
+ field_names.PERCENTILE_FIELD_SUFFIX: "IAPLHSE_PFS",
field_names.CENSUS_DECENNIAL_UNEMPLOYMENT_FIELD_2009
+ field_names.ISLAND_AREAS_PERCENTILE_ADJUSTMENT_FIELD
+ field_names.PERCENTILE_FIELD_SUFFIX: "IAULHSE_PFS",
field_names.LOW_HS_EDUCATION_FIELD: "LHE",
field_names.ISLAND_AREAS_LOW_HS_EDUCATION_FIELD: "IALHE",
# Percentage of HS Degree completion for Islands
field_names.CENSUS_DECENNIAL_HIGH_SCHOOL_ED_FIELD_2009: "IAHSEF",
# Booleans for the front end about the types of thresholds exceeded
field_names.CLIMATE_THRESHOLD_EXCEEDED: "N_CLT_EOMI",
field_names.ENERGY_THRESHOLD_EXCEEDED: "N_ENY_EOMI",
field_names.TRAFFIC_THRESHOLD_EXCEEDED: "N_TRN_EOMI",
field_names.HOUSING_THREHSOLD_EXCEEDED: "N_HSG_EOMI",
field_names.POLLUTION_THRESHOLD_EXCEEDED: "N_PLN_EOMI",
field_names.WATER_THRESHOLD_EXCEEDED: "N_WTR_EOMI",
field_names.HEALTH_THRESHOLD_EXCEEDED: "N_HLTH_EOMI",
field_names.WORKFORCE_THRESHOLD_EXCEEDED: "N_WKFC_EOMI",
# These are the booleans for socioeconomic indicators
## this measures low income boolean
field_names.FPL_200_SERIES_IMPUTED_AND_ADJUSTED: "FPL200S",
## Low high school for t&wd
field_names.WORKFORCE_SOCIO_INDICATORS_EXCEEDED: "N_WKFC_EBSI",
field_names.DOT_BURDEN_PCTILE_THRESHOLD: "TD_ET",
field_names.DOT_TRAVEL_BURDEN_FIELD
+ field_names.PERCENTILE_FIELD_SUFFIX: "TD_PFS",
field_names.FUTURE_FLOOD_RISK_FIELD
+ field_names.PERCENTILE_FIELD_SUFFIX: "FLD_PFS",
field_names.FUTURE_WILDFIRE_RISK_FIELD
+ field_names.PERCENTILE_FIELD_SUFFIX: "WFR_PFS",
field_names.HIGH_FUTURE_FLOOD_RISK_FIELD: "FLD_ET",
field_names.HIGH_FUTURE_WILDFIRE_RISK_FIELD: "WFR_ET",
field_names.ADJACENT_TRACT_SCORE_ABOVE_DONUT_THRESHOLD: "ADJ_ET",
field_names.TRACT_PERCENT_NON_NATURAL_FIELD_NAME
+ field_names.PERCENTILE_FIELD_SUFFIX: "IS_PFS",
field_names.NON_NATURAL_PCTILE_THRESHOLD: "IS_ET", # NON_NATURAL_LOW_INCOME_FIELD_NAME
field_names.AML_BOOLEAN_FILLED_IN: "AML_ET",
field_names.ELIGIBLE_FUDS_BINARY_FIELD_NAME: "FUDS_RAW",
field_names.ELIGIBLE_FUDS_FILLED_IN_FIELD_NAME: "FUDS_ET",
field_names.IMPUTED_INCOME_FLAG_FIELD_NAME: "IMP_FLG",
## FPL 200 and low higher ed for all others should no longer be M_EBSI, but rather
## FPL_200 (there is no higher ed in narwhal)
field_names.PERCENT_BLACK_FIELD_NAME: "DM_B",
field_names.PERCENT_AMERICAN_INDIAN_FIELD_NAME: "DM_AI",
field_names.PERCENT_ASIAN_FIELD_NAME: "DM_A",
field_names.PERCENT_HAWAIIAN_FIELD_NAME: "DM_HI",
field_names.PERCENT_TWO_OR_MORE_RACES_FIELD_NAME: "DM_T",
field_names.PERCENT_NON_HISPANIC_WHITE_FIELD_NAME: "DM_W",
field_names.PERCENT_HISPANIC_FIELD_NAME: "DM_H",
field_names.PERCENT_OTHER_RACE_FIELD_NAME: "DM_O",
field_names.PERCENT_AGE_UNDER_10: "AGE_10",
field_names.PERCENT_AGE_10_TO_64: "AGE_MIDDLE",
field_names.PERCENT_AGE_OVER_64: "AGE_OLD",
field_names.COUNT_OF_TRIBAL_AREAS_IN_TRACT_AK: "TA_COUNT_AK",
field_names.COUNT_OF_TRIBAL_AREAS_IN_TRACT_CONUS: "TA_COUNT_C",
field_names.PERCENT_OF_TRIBAL_AREA_IN_TRACT: "TA_PERC",
field_names.PERCENT_OF_TRIBAL_AREA_IN_TRACT_DISPLAY: "TA_PERC_FE",
}