forked from rsignell-usgs/notebook
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Glider_DAC_test.py
126 lines (71 loc) · 1.84 KB
/
Glider_DAC_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
# -*- coding: utf-8 -*-
# <nbformat>3.0</nbformat>
# <headingcell level=1>
# Testing Glider DAC access in Python
# <codecell>
import numpy as np
import matplotlib.pyplot as plt
import netCDF4
import numpy.ma as ma
import seawater
%matplotlib inline
# <markdowncell>
# This is a url from Kerfooot's TDS server, using the multidimensional NetCDF datasets created by a private ERDDAP instance. These multidimensonal datasets are also available from ERDDAP, along with a flattened NetCDF representation and a ragged NetCDF representation.
#
# The glider ERDDAP is here:
# http://erddap.marine.rutgers.edu/erddap
#
# The glider TDS is here: http://tds.marine.rutgers.edu:8080/thredds/catalog/cool/glider/all/catalog.html
# <codecell>
url = 'http://tds.marine.rutgers.edu:8080/thredds/dodsC/cool/glider/all/ru22-20130924T2010.ncCFMA.nc3.nc'
# <codecell>
nc = netCDF4.Dataset(url)
ncv = nc.variables
# <codecell>
ncv.keys()
# <codecell>
lon = ncv['longitude'][:]
lat = ncv['latitude'][:]
# <codecell>
import iris
# <codecell>
t = iris.load_cube(url,'sea_water_temperature')
# <codecell>
print t
# <codecell>
lon=t.coord(axis='X')
# <codecell>
lat=t.coord(axis='Y')
# <codecell>
z = t.coord(axis='Z')
# <codecell>
tvar = t.coord(axis='T')
# <codecell>
shape(t)
# <codecell>
tvals= t[0,::5,::2].data
# <codecell>
tvals=ma.masked_where(tvals==-999.,tvals)
# <codecell>
pcolormesh(flipud(tvals.T));colorbar()
# <codecell>
dist, pha = seawater.extras.dist(lat.points[0],lon.points[0],units='km')
# <codecell>
d = np.cumsum(dist)
d = np.insert(d,0,0)
# <codecell>
print shape(d)
# <codecell>
x = (d*np.ones([680,1])).T
# <codecell>
zval = z.points
# <codecell>
shape(zval)
# <codecell>
print shape(x[::5,::2])
print shape(zval[0,::5,::2])
print shape(tvals)
# <codecell>
shape(x)
# <codecell>
pcolormesh(x[::5,::2],zval[0,::5,::2],tvals)