-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy patheval.py
148 lines (119 loc) · 6.23 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
import sys
from pipeline import *
import argparse
import h5py
import os
import random
import time
import numpy as np
import torch
from torch.autograd import Variable
from torch import nn
from torch import cuda
from holder import *
from data import *
from multiclass_loss import *
parser = argparse.ArgumentParser(description=__doc__, formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('--dir', help="Path to the data dir", default="data/nli_aug/")
parser.add_argument('--data', help="Path to validation data hdf5 file.", default="snli-val.hdf5")
parser.add_argument('--res', help="Path to training resource files, seperated by comma.", default="")
parser.add_argument('--word_vecs', help="The path to word embeddings", default = "glove.hdf5")
parser.add_argument('--char_idx', help="The path to word2char index file", default = "char.idx.hdf5")
parser.add_argument('--dict', help="The path to word dictionary", default = "snli.word.dict")
parser.add_argument('--char_dict', help="The path to char dictionary", default = "char.dict.txt")
parser.add_argument('--load_file', help="Path to where model to be loaded.", default="")
# generic parameter
parser.add_argument('--param_init_type', help="The type of parameter initialization", default='xavier_uniform')
parser.add_argument('--param_init', help="The scale of the normal distribution from which weights are initialized", type=float, default=0.01)
parser.add_argument('--fix_word_vecs', help="Whether to make word embeddings NOT learnable", type=int, default=1)
parser.add_argument('--dropout', help="The dropout probability", type=float, default=0.0)
parser.add_argument('--seed', help="The random seed", type=int, default=3435)
parser.add_argument('--gpuid', help="The GPU index, if -1 then use CPU", type=int, default=-1)
parser.add_argument('--use_char_enc', help="Whether to use char encoding", type=int, default=0)
# dimensionality
parser.add_argument('--char_filters', help="The list of filters for char cnn", default='5')
parser.add_argument('--num_char', help="The number of distinct chars", type=int, default=61)
parser.add_argument('--char_emb_size', help="The input char embedding dim", type=int, default=20)
parser.add_argument('--char_enc_size', help="The input char encoding dim", type=int, default=100)
parser.add_argument('--hidden_size', help="The general hidden size of the pipeline", type=int, default=200)
parser.add_argument('--cls_hidden_size', help="The hidden size of the classifier", type=int, default=200)
parser.add_argument('--word_vec_size', help="The input word embedding dim", type=int, default=300)
parser.add_argument('--token_l', help="The maximal token length", type=int, default=16)
## pipeline specs
parser.add_argument('--encoder', help="The type of encoder", default="rnn")
parser.add_argument('--attention', help="The type of attention", default="local")
parser.add_argument('--classifier', help="The type of classifier", default="local")
parser.add_argument('--rnn_layer', help="The number of layers of rnn encoder", type=int, default=1)
parser.add_argument('--rnn_type', help="What type of rnn to use, default lstm", default='lstm')
parser.add_argument('--birnn', help="Whether to use bidirectional rnn", type=int, default=1)
parser.add_argument('--num_att_label', help='The number of attention labels', type=int, default=1)
parser.add_argument('--num_label', help="The number of prediction labels", type=int, default=3)
parser.add_argument('--constr_on', help="Directions of attentions to apply constraints on", default='1')
parser.add_argument('--cross_constr', help="The list of constraint layers to use, no if empty", default="")
parser.add_argument('--within_constr', help="The list of att constraint layers to use, no if empty", default="")
parser.add_argument('--rho_c', help="The weight of cross layer constraint", default='')
parser.add_argument('--rho_w', help="The weight of within layer constraint", type=float, default=1.0)
def evaluate(opt, shared, m, data):
m.train(False)
val_loss = 0.0
num_ex = 0
loss = MulticlassLoss(opt, shared)
val_idx, val_num_ex = data.subsample(1.0)
data_size = val_idx.size()[0]
print('evaluating on {0} batches {1} examples'.format(data_size, val_num_ex))
m.begin_pass()
for i in range(data_size):
(data_name, source, target, char_source, char_target,
batch_ex_idx, batch_l, source_l, target_l, label, res_map) = data[val_idx[i]]
wv_idx1 = Variable(source, requires_grad=False)
wv_idx2 = Variable(target, requires_grad=False)
cv_idx1 = Variable(char_source, requires_grad=False)
cv_idx2 = Variable(char_target, requires_grad=False)
y_gold = Variable(label, requires_grad=False)
# update network parameters
m.update_context(batch_ex_idx, batch_l, source_l, target_l, res_map)
# forward pass
pred = m.forward(wv_idx1, wv_idx2, cv_idx1, cv_idx2)
# loss
batch_loss = loss(pred, y_gold)
# stats
val_loss += float(batch_loss.data)
num_ex += batch_l
perf, extra_perf = loss.get_epoch_metric()
m.end_pass()
print('finished evaluation on {0} examples'.format(num_ex))
return (perf, extra_perf, val_loss / num_ex, num_ex)
def main(args):
opt = parser.parse_args(args)
shared = Holder()
#
opt.data = opt.dir + opt.data
opt.res = '' if opt.res == '' else ','.join([opt.dir + path for path in opt.res.split(',')])
opt.word_vecs = opt.dir + opt.word_vecs
opt.char_idx = opt.dir + opt.char_idx
opt.dict = opt.dir + opt.dict
opt.char_dict = opt.dir + opt.char_dict
if opt.gpuid != -1:
torch.cuda.set_device(opt.gpuid)
torch.cuda.manual_seed_all(1)
# build model
m = Pipeline(opt, shared)
# initialization
print('loading pretrained model from {0}...'.format(opt.load_file))
param_dict = load_param_dict('{0}.hdf5'.format(opt.load_file))
m.set_param_dict(param_dict)
if opt.gpuid != -1:
m = m.cuda()
# loading data
res_files = None if opt.res == '' else opt.res.split(',')
data = Data(opt, opt.data, res_files)
#
perf, extra_perf, avg_loss, num_ex = evaluate(opt, shared, m, data)
extra_perf_str = ' '.join(['{:.4f}'.format(p) for p in extra_perf])
print('Val {0:.4f} Extra {1} Loss: {2:.4f}'.format(
perf, extra_perf_str, avg_loss))
#print('saving model to {0}'.format('tmp'))
#param_dict = m.get_param_dict()
#save_param_dict(param_dict, '{0}.hdf5'.format('tmp'))
if __name__ == '__main__':
sys.exit(main(sys.argv[1:]))