-
Notifications
You must be signed in to change notification settings - Fork 11
/
utils.py
372 lines (307 loc) · 12.4 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
import torch
import torch.fft as torch_fft
import numpy as np
import sigpy as sp
from torch import nn
from torch.nn import functional as F
from PIL import Image
import os
from torchvision import transforms
import shutil
from collections import OrderedDict
import math
from torchvision.utils import make_grid
import matplotlib.pyplot as plt
import torchvision
from datetime import datetime
import glob
import torch.distributed as dist
import h5py
import functools
import logging
import warnings
import pickle
import re
import copy
from torch.optim import Adam
class SphericalOptimizer():
def __init__(self, params):
self.params = params
with torch.no_grad():
self.radii = {param: (param.pow(2).sum(tuple(range(2, param.ndim)), keepdim=True)+1e-9).sqrt() for param in params}
@torch.no_grad()
def step(self, closure=None):
for param in self.params:
param.data.div_((param.pow(2).sum(tuple(range(2, param.ndim)), keepdim=True) + 1e-9).sqrt())
param.mul_(self.radii[param])
class MappingProxy(nn.Module):
def __init__(self, gaussian_ft):
super(MappingProxy, self).__init__()
self.mean = torch.nn.Parameter(gaussian_ft["mean"], requires_grad=False)
self.std = torch.nn.Parameter(gaussian_ft["std"], requires_grad=False)
self.lrelu = torch.nn.LeakyReLU(0.2)
def forward(self, x):
x = self.lrelu(self.std * x + self.mean)
return x
class BicubicDownSample(nn.Module):
def bicubic_kernel(self, x, a=-0.50):
"""
This equation is exactly copied from the website below:
https://clouard.users.greyc.fr/Pantheon/experiments/rescaling/index-en.html#bicubic
"""
abs_x = torch.abs(x)
if abs_x <= 1.:
return (a + 2.) * torch.pow(abs_x, 3.) - (a + 3.) * torch.pow(abs_x, 2.) + 1
elif 1. < abs_x < 2.:
return a * torch.pow(abs_x, 3) - 5. * a * torch.pow(abs_x, 2.) + 8. * a * abs_x - 4. * a
else:
return 0.0
def __init__(self, factor=4, device='cuda', padding='reflect'):
super().__init__()
self.factor = factor
size = factor * 4
k = torch.tensor([self.bicubic_kernel((i - torch.floor(torch.tensor(size / 2)) + 0.5) / factor)
for i in range(size)], dtype=torch.float32)
k = k / torch.sum(k)
# k = torch.einsum('i,j->ij', (k, k))
k1 = torch.reshape(k, shape=(1, 1, size, 1))
self.k1 = torch.cat([k1, k1, k1], dim=0).float().to(device)
k2 = torch.reshape(k, shape=(1, 1, 1, size))
self.k2 = torch.cat([k2, k2, k2], dim=0).float().to(device)
self.device = device
self.padding = padding
#self.padding = 'constant'
#self.padding = 'replicate'
for param in self.parameters():
param.requires_grad = False
def forward(self, x, nhwc=False, clip_round=False, byte_output=False):
filter_height = self.factor * 4
filter_width = self.factor * 4
stride = self.factor
pad_along_height = max(filter_height - stride, 0)
pad_along_width = max(filter_width - stride, 0)
filters1 = self.k1
filters2 = self.k2
# compute actual padding values for each side
pad_top = pad_along_height // 2
pad_bottom = pad_along_height - pad_top
pad_left = pad_along_width // 2
pad_right = pad_along_width - pad_left
# apply mirror padding
if nhwc:
x = torch.transpose(torch.transpose(
x, 2, 3), 1, 2) # NHWC to NCHW
# downscaling performed by 1-d convolution
x = F.pad(x, (0, 0, pad_top, pad_bottom), self.padding)
x = F.conv2d(input=x.float(), weight=filters1, stride=(stride, 1), groups=3)
if clip_round:
x = torch.clamp(torch.round(x), 0.0, 255.)
x = F.pad(x, (pad_left, pad_right, 0, 0), self.padding)
x = F.conv2d(input=x, weight=filters2, stride=(1, stride), groups=3)
if clip_round:
x = torch.clamp(torch.round(x), 0.0, 255.)
if nhwc:
x = torch.transpose(torch.transpose(x, 1, 3), 1, 2)
if byte_output:
return x.type('torch.ByteTensor'.format(self.cuda))
else:
return x
# Multicoil forward operator for MRI
class MulticoilForwardMRI(nn.Module):
def __init__(self, orientation):
self.orientation = orientation
super(MulticoilForwardMRI, self).__init__()
return
# Centered, orthogonal ifft in torch >= 1.7
def _ifft(self, x):
x = torch_fft.ifftshift(x, dim=(-2, -1))
x = torch_fft.ifft2(x, dim=(-2, -1), norm='ortho')
x = torch_fft.fftshift(x, dim=(-2, -1))
return x
# Centered, orthogonal fft in torch >= 1.7
def _fft(self, x):
x = torch_fft.fftshift(x, dim=(-2, -1))
x = torch_fft.fft2(x, dim=(-2, -1), norm='ortho')
x = torch_fft.ifftshift(x, dim=(-2, -1))
return x
'''
Inputs:
- image = [B, H, W] torch.complex64/128 in image domain
- maps = [B, C, H, W] torch.complex64/128 in image domain
- mask = [B, W] torch.complex64/128 w/ binary values
Outputs:
- ksp_coils = [B, C, H, W] torch.complex64/128 in kspace domain
'''
def forward(self, image, maps, mask):
# Broadcast pointwise multiply
coils = image[:, None] * maps
# Convert to k-space data
ksp_coils = self._fft(coils)
if self.orientation == 'vertical':
# Mask k-space phase encode lines
ksp_coils = ksp_coils * mask[:, None, None, :]
elif self.orientation == 'horizontal':
# Mask k-space frequency encode lines
ksp_coils = ksp_coils * mask[:, None, :, None]
else:
if len(mask.shape) == 3:
ksp_coils = ksp_coils * mask[:, None, :, :]
else:
raise NotImplementedError('mask orientation not supported')
# Return downsampled k-space
return ksp_coils
# Generate a mask for MRI downsampling
def get_mask(acs_lines=26, total_lines=384, R=1):
# Overall sampling budget
num_sampled_lines = np.floor(total_lines / R)
# Get locations of ACS lines
# !!! Assumes k-space is even sized and centered, true for fastMRI
center_line_idx = np.arange((total_lines - acs_lines) // 2,
(total_lines + acs_lines) // 2)
# Find remaining candidates
outer_line_idx = np.setdiff1d(np.arange(total_lines), center_line_idx)
# Sample remaining lines from outside the ACS at random
random_line_idx = np.random.choice(outer_line_idx,
size=int(num_sampled_lines - acs_lines), replace=False)
# Create a mask and place ones at the right locations
mask = np.zeros((total_lines))
mask[center_line_idx] = 1.
mask[random_line_idx] = 1.
return mask
# Generate measurements directly from raw fastMRI data files
# Includes rescaling to 384 x 384, ACS-based scaling
# and masking
def get_measurements(raw_file, slice_idx, mask):
# Load file and get slice
with h5py.File(raw_file, 'r') as data:
gt_ksp = np.asarray(data['kspace'][slice_idx])
# Crop lines in k-space to 384
gt_ksp = sp.resize(gt_ksp, (
gt_ksp.shape[0], gt_ksp.shape[1], 384))
# Reduce FoV by half in the readout direction
gt_ksp = sp.ifft(gt_ksp, axes=(-2,))
gt_ksp = sp.resize(gt_ksp, (gt_ksp.shape[0], 384,
gt_ksp.shape[2]))
gt_ksp = sp.fft(gt_ksp, axes=(-2,)) # Back to k-space
# ACS-based scaling
# !!! Change this to pixel-based if desired
acs = sp.resize(gt_ksp, (26, 26))
scale_factor = np.max(np.abs(acs))
# Downsample and scale
measured_ksp = gt_ksp * mask[None, None, :]
measured_ksp = measured_ksp / scale_factor
gt_ksp = gt_ksp / scale_factor
return measured_ksp, gt_ksp, scale_factor
def get_mvue(kspace, s_maps):
''' Get mvue estimate from coil measurements '''
return np.sum(sp.ifft(kspace, axes=(-1, -2)) * np.conj(s_maps), axis=1) / np.sqrt(np.sum(np.square(np.abs(s_maps)), axis=1))
def loss_geocross(latent):
if latent.size() == (1, 512):
return 0
else:
num_latents = latent.size()[1]
X = latent.view(-1, 1, num_latents, 512)
Y = latent.view(-1, num_latents, 1, 512)
A = ((X - Y).pow(2).sum(-1) + 1e-9).sqrt()
B = ((X + Y).pow(2).sum(-1) + 1e-9).sqrt()
D = 2 * torch.atan2(A, B)
D = ((D.pow(2) * 512).mean((1, 2)) / 8.).mean()
return D
def get_lr(t, initial_lr, rampdown=0.75, rampup=0.05):
lr_ramp = min(1, (1 - t) / rampdown)
lr_ramp = 0.5 - 0.5 * math.cos(lr_ramp * math.pi)
lr_ramp = lr_ramp * min(1, t / rampup)
return initial_lr * lr_ramp
def get_all_files(folder, pattern='*'):
files = [x for x in glob.iglob(os.path.join(folder, pattern))]
return sorted(files)
# Source: https://stackoverflow.com/questions/3229419/how-to-pretty-print-nested-dictionaries
def pretty(d, indent=0):
''' Print dictionary '''
for key, value in d.items():
print('\t' * indent + str(key))
if isinstance(value, dict):
pretty(value, indent+1)
else:
print('\t' * (indent+1) + str(value))
def get_transformation(image_size):
return transforms.Compose(
[transforms.Resize(image_size),
transforms.ToTensor()])
def load_or_learn_mapping(mapping_network=None, gaussian_fit_loc=None,
device='cuda', num_samples=100000, z_dim=512, relu_alpha=5):
try:
return MappingProxy(torch.load(gaussian_fit_loc, map_location='cpu'))
except:
mapping_network.to(device)
latent = torch.randn((num_samples, z_dim), dtype=torch.float32, device=device)
out = torch.nn.LeakyReLU(relu_alpha)(mapping_network(latent, None))
gaussian_fit = {"mean": out.mean((0, 1)), "std": out.std((0, 1))}
torch.save(gaussian_fit, gaussian_fit_loc)
return MappingProxy(torch.load(gaussian_fit_loc, map_location='cpu'))
def create_folder(folder):
if os.path.isdir(folder):
while 1:
response = input('Directory exists. Do you want to overwrite? (y/N) ')
if response == 'y':
shutil.rmtree(folder)
break
elif response == 'N':
os._exit(0)
os.makedirs(folder)
def save_images(samples, loc, normalize=False):
torchvision.utils.save_image(
samples,
loc,
nrow=int(samples.shape[0] ** 0.5),
normalize=normalize,
scale_each=True)
def load_dict(model, ckpt, device='cuda'):
state_dict = torch.load(ckpt, map_location=device)
try:
model.load_state_dict(state_dict)
except:
print('Loading model failed... Trying to remove the module from the keys...')
new_state_dict = OrderedDict()
for key, value in state_dict.items():
new_state_dict[key[len('module.'):]] = value
model.load_state_dict(new_state_dict)
return model
def to_rgb(img, old_min=-1, old_max=1):
return (255 * (img - old_min) / (old_max - old_min + 1e-5)).to(torch.uint8)
def get_time():
return datetime.now().strftime('%H:%M:%S:%f')
def get_loss_fn(config, latent_z=None, mask=None, start_layer=0):
device = config['device']
functions = []
labels = []
if 'mse' in config and sum(config['mse']) > 0:
labels.append('MSE')
if mask is not None:
functions.append(lambda x, y: F.mse_loss(x * mask, y))
else:
functions.append(lambda x, y: F.mse_loss(x, y))
if 'geocross' in config and latent_z is not None and config['geocross'] > 0:
labels.append('Geocross')
functions.append(lambda x, y: loss_geocross(latent_z[2 * start_layer:]) * config['geocross'])
return (lambda x, y: [fn(x, y) for fn in functions]), labels
def mp_setup(rank, world_size, port=12345):
os.environ['MASTER_ADDR'] = 'localhost'
os.environ['MASTER_PORT'] = str(port)
# initialize the process group
dist.init_process_group("gloo", rank=rank, world_size=world_size)
torch.cuda.set_device(rank)
def mp_cleanup():
dist.destroy_process_group()
def update_pbar_desc(pbar, metrics, labels):
pbar_string = ''
for metric, label in zip(metrics, labels):
pbar_string += f'{label}: {metric:.7f}; '
pbar.set_description(pbar_string)
class MpLogger:
def __init__(self, logger, rank):
self.logger = logger
self.rank = rank
def info(self, message):
if self.rank == 0:
self.logger.info(message)