forked from JoshuaEbenezer/ChipQA
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcolour_utils.py
892 lines (714 loc) · 27.3 KB
/
colour_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
import numpy as np
__all__ = [
'YCBCR_WEIGHTS', 'YCbCr_ranges', 'RGB_to_YCbCr', 'YCbCr_to_RGB',
'RGB_to_YcCbcCrc', 'YcCbcCrc_to_RGB'
]
YCBCR_WEIGHTS = dict({
'ITU-R BT.601': np.array([0.2990, 0.1140]),
'ITU-R BT.709': np.array([0.2126, 0.0722]),
'ITU-R BT.2020': np.array([0.2627, 0.0593]),
'SMPTE-240M': np.array([0.2122, 0.0865])
})
WEIGHTS_YCBCR = dict(
{
"ITU-R BT.601": np.array([0.2990, 0.1140]),
"ITU-R BT.709": np.array([0.2126, 0.0722]),
"ITU-R BT.2020": np.array([0.2627, 0.0593]),
"SMPTE-240M": np.array([0.2122, 0.0865]),
}
)
BT2020_RGB_to_XYZ_matrix = np.asarray([[ 6.36958048e-01, 1.44616904e-01, 1.68880975e-01],
[ 2.62700212e-01, 6.77998072e-01, 5.93017165e-02],
[ 4.99410657e-17, 2.80726930e-02, 1.06098506e+00]])
CAT_CAT02 = np.asarray([[ 0.7328, 0.4296, -0.1624],\
[-0.7036, 1.6975, 0.0061], [ 0.003 , 0.0136, 0.9834]])
def eotf_ST2084(N,L_p=10000):
"""
Define *SMPTE ST 2084:2014* optimised perceptual electro-optical transfer
function (EOTF).
This perceptual quantizer (PQ) has been modeled by Dolby Laboratories
using *Barten (1999)* contrast sensitivity function.
Parameters
----------
N
Color value abbreviated as :math:`N`, that is directly proportional to
the encoded signal representation, and which is not directly
proportional to the optical output of a display device.
L_p
System peak luminance :math:`cd/m^2`, this parameter should stay at its
default :math:`10000 cd/m^2` value for practical applications. It is
exposed so that the definition can be used as a fitting function.
constants
*SMPTE ST 2084:2014* constants.
Returns
-------
:class:`numpy.floating` or :class:`numpy.ndarray`
Target optical output :math:`C` in :math:`cd/m^2` of the ideal
reference display.
Warnings
--------
*SMPTE ST 2084:2014* is an absolute transfer function.
Notes
-----
- *SMPTE ST 2084:2014* is an absolute transfer function, thus the
domain and range values for the *Reference* and *1* scales are only
indicative that the data is not affected by scale transformations.
+------------+-----------------------+---------------+
| **Domain** | **Scale - Reference** | **Scale - 1** |
+============+=======================+===============+
| ``N`` | ``UN`` | ``UN`` |
+------------+-----------------------+---------------+
+------------+-----------------------+---------------+
| **Range** | **Scale - Reference** | **Scale - 1** |
+============+=======================+===============+
| ``C`` | ``UN`` | ``UN`` |
+------------+-----------------------+---------------+
References
----------
:cite:`Miller2014a`,
:cite:`SocietyofMotionPictureandTelevisionEngineers2014a`
Examples
--------
>>> eotf_ST2084(0.508078421517399) # doctest: +ELLIPSIS
100.0000000...
"""
N = np.asarray(N).astype(np.float32)
m_1=2610.0 / 4096.0 * (1.0 / 4.0)
m_2=2523.0 / 4096.0 * 128.0
c_1=3424.0 / 4096.0
c_2=2413.0 / 4096.0 * 32.0
c_3=2392.0 / 4096.0 * 32.0
m_1_d = 1 / m_1
m_2_d = 1 / m_2
V_p = spow(N, m_2_d)
n = np.maximum(0, V_p - c_1)
L = spow((n / (c_2 - c_3 * V_p)), m_1_d)
C = L_p * L
return C.astype(np.float32)
def CV_range(bit_depth=10, is_legal=False, is_int=False):
"""
Returns the code value :math:`CV` range for given bit depth, range legality
and representation.
Parameters
----------
bit_depth : int, optional
Bit depth of the code value :math:`CV` range.
is_legal : bool, optional
Whether the code value :math:`CV` range is legal.
is_int : bool, optional
Whether the code value :math:`CV` range represents integer code values.
Returns
-------
ndarray
Code value :math:`CV` range.
Examples
--------
>>> CV_range(8, True, True)
array([ 16, 235])
>>> CV_range(8, True, False) # doctest: +ELLIPSIS
array([ 0.0627451..., 0.9215686...])
>>> CV_range(10, False, False)
array([ 0., 1.])
"""
if is_legal:
ranges = np.array([16, 235])
ranges *= 2 ** (bit_depth - 8)
else:
ranges = np.array([0, 2 ** bit_depth - 1])
if not is_int:
ranges = ranges.astype(np.float32) / (2 ** bit_depth - 1)
return ranges
def YCbCr_ranges(bits, is_legal, is_int):
""""
Returns the *Y'CbCr* colour encoding ranges array for given bit depth,
range legality and representation.
Parameters
----------
bits : int
Bit depth of the *Y'CbCr* colour encoding ranges array.
is_legal : bool
Whether the *Y'CbCr* colour encoding ranges array is legal.
is_int : bool
Whether the *Y'CbCr* colour encoding ranges array represents integer
code values.
Returns
-------
ndarray
*Y'CbCr* colour encoding ranges array.
Examples
--------
>>> YCbCr_ranges(8, True, True)
array([ 16, 235, 16, 240])
>>> YCbCr_ranges(8, True, False) # doctest: +ELLIPSIS
array([ 0.0627451..., 0.9215686..., 0.0627451..., 0.9411764...])
>>> YCbCr_ranges(10, False, False)
array([ 0. , 1. , -0.5, 0.5])
"""
if is_legal:
ranges = np.array([16, 235, 16, 240])
ranges *= 2 ** (bits - 8)
else:
ranges = np.array([0, 2 ** bits - 1, 0, 2 ** bits - 1])
if not is_int:
ranges = ranges.astype(np.float32) / (2 ** bits - 1)
if is_int and not is_legal:
ranges[3] = 2 ** bits
if not is_int and not is_legal:
ranges[2] = -0.5
ranges[3] = 0.5
return ranges.astype(np.float32)
def eotf_PQ_BT2100(E_p):
"""
Define *Recommendation ITU-R BT.2100* *Reference PQ* electro-optical
transfer function (EOTF).
The EOTF maps the non-linear *PQ* signal into display light.
Parameters
----------
E_p
:math:`E'` denotes a non-linear colour value :math:`{R', G', B'}` or
:math:`{L', M', S'}` in *PQ* space [0, 1].
Returns
-------
:class:`numpy.floating` or :class:`numpy.ndarray`
:math:`F_D` is the luminance of a displayed linear component
:math:`{R_D, G_D, B_D}` or :math:`Y_D` or :math:`I_D`, in
:math:`cd/m^2`.
Notes
-----
+------------+-----------------------+---------------+
| **Domain** | **Scale - Reference** | **Scale - 1** |
+============+=======================+===============+
| ``E_p`` | ``UN`` | ``UN`` |
+------------+-----------------------+---------------+
+------------+-----------------------+---------------+
| **Range** | **Scale - Reference** | **Scale - 1** |
+============+=======================+===============+
| ``F_D`` | ``UN`` | ``UN`` |
+------------+-----------------------+---------------+
References
----------
:cite:`Borer2017a`, :cite:`InternationalTelecommunicationUnion2017`
Examples
--------
>>> eotf_PQ_BT2100(0.724769816665726) # doctest: +ELLIPSIS
779.9883608...
"""
return eotf_ST2084(E_p, 10000)
def RGB_to_YCbCr(
RGB,
K= WEIGHTS_YCBCR["ITU-R BT.709"],
in_bits= 10,
in_legal= False,
in_int= False,
out_bits= 8,
out_legal= True,
out_int= False,
**kwargs):
Kr, Kb = K
RGB_min, RGB_max = CV_range(in_bits, in_legal, in_int)
Y_min, Y_max, C_min, C_max = YCbCr_ranges(out_bits, out_legal, out_int)
RGB_float = RGB.astype(np.float32) - RGB_min
RGB_float *= 1 / (RGB_max - RGB_min)
R, G, B = RGB_float[:,:,0],RGB_float[:,:,1],RGB_float[:,:,2]
Y = Kr * R + (1 - Kr - Kb) * G + Kb * B
Cb = 0.5 * (B - Y) / (1 - Kb)
Cr = 0.5 * (R - Y) / (1 - Kr)
Y *= Y_max - Y_min
Y += Y_min
Cb *= C_max - C_min
Cr *= C_max - C_min
Cb += (C_max + C_min) / 2
Cr += (C_max + C_min) / 2
YCbCr = np.stack([Y, Cb, Cr],axis=2)
return YCbCr
def YCbCr_to_RGB(YCbCr,
K=YCBCR_WEIGHTS['ITU-R BT.709'],
in_bits=8,
in_legal=True,
in_int=False,
out_bits=10,
out_legal=False,
out_int=False,
**kwargs):
"""
Converts an array of *Y'CbCr* colour encoding values to the corresponding
*R'G'B'* values array.
Parameters
----------
YCbCr : array_like
Input *Y'CbCr* colour encoding array of integer or float values.
K : array_like, optional
Luma weighting coefficients of red and blue. See
:attr:`colour.YCBCR_WEIGHTS` for presets. Default is
*(0.2126, 0.0722)*, the weightings for *ITU-R BT.709*.
in_bits : int, optional
Bit depth for integer input, or used in the calculation of the
denominator for legal range float values, i.e. 8-bit means the float
value for legal white is *235 / 255*. Default is *8*.
in_legal : bool, optional
Whether to treat the input values as legal range. Default is *True*.
in_int : bool, optional
Whether to treat the input values as ``in_bits`` integer code values.
Default is *False*.
out_bits : int, optional
Bit depth for integer output, or used in the calculation of the
denominator for legal range float values, i.e. 8-bit means the float
value for legal white is *235 / 255*. Ignored if ``out_legal`` and
``out_int`` are both *False*. Default is *10*.
out_legal : bool, optional
Whether to return legal range values. Default is *False*.
out_int : bool, optional
Whether to return values as ``out_bits`` integer code values. Default
is *False*.
Other Parameters
----------------
in_range : array_like, optional
Array overriding the computed range such as
*in_range = (Y_min, Y_max, C_min, C_max)*. If ``in_range`` is
undefined, *Y_min*, *Y_max*, *C_min* and *C_max* will be computed using
:func:`colour.models.rgb.ycbcr.YCbCr_ranges` definition.
out_range : array_like, optional
Array overriding the computed range such as
*out_range = (RGB_min, RGB_max)*. If ``out_range`` is undefined,
*RGB_min* and *RGB_max* will be computed using :func:`colour.CV_range`
definition.
Returns
-------
ndarray
*R'G'B'* array of integer or float values.
Notes
-----
+----------------+-----------------------+---------------+
| **Domain \\*** | **Scale - Reference** | **Scale - 1** |
+================+=======================+===============+
| ``YCbCr`` | [0, 1] | [0, 1] |
+----------------+-----------------------+---------------+
+----------------+-----------------------+---------------+
| **Range \\*** | **Scale - Reference** | **Scale - 1** |
+================+=======================+===============+
| ``RGB`` | [0, 1] | [0, 1] |
+----------------+-----------------------+---------------+
\\* This definition has input and output integer switches, thus the
domain-range scale information is only given for the floating point mode.
Warning
-------
For *Recommendation ITU-R BT.2020*, :func:`colour.YCbCr_to_RGB`
definition is only applicable to the non-constant luminance implementation.
:func:`colour.YcCbcCrc_to_RGB` definition should be used for the constant
luminance case as per :cite:`InternationalTelecommunicationUnion2015h`.
References
----------
:cite:`InternationalTelecommunicationUnion2011e`,
:cite:`InternationalTelecommunicationUnion2015i`,
:cite:`SocietyofMotionPictureandTelevisionEngineers1999b`,
:cite:`Wikipedia2004d`
Examples
--------
>>> YCbCr = np.array([502, 512, 512])
>>> YCbCr_to_RGB(YCbCr, in_bits=10, in_legal=True, in_int=True)
array([ 0.5, 0.5, 0.5])
"""
YCbCr = YCbCr.astype(np.float32)
Y, Cb, Cr = YCbCr[:,:,0], YCbCr[:,:,1], YCbCr[:,:,2],
Kr, Kb = K
Y_min, Y_max, C_min, C_max = YCbCr_ranges(in_bits, in_legal, in_int)
RGB_min, RGB_max = CV_range(out_bits, out_legal, out_int)
Y -= Y_min
Cb -= (C_max + C_min) / 2
Cr -= (C_max + C_min) / 2
Y *= 1 / (Y_max - Y_min)
Cb *= 1 / (C_max - C_min)
Cr *= 1 / (C_max - C_min)
R = Y + (2 - 2 * Kr) * Cr
B = Y + (2 - 2 * Kb) * Cb
G = (Y - Kr * R - Kb * B) / (1 - Kr - Kb)
RGB = np.dstack([R, G, B])
RGB *= RGB_max - RGB_min
RGB += RGB_min
RGB = np.round(RGB).astype(np.uint16) if out_int else RGB
return RGB
def matrix_chromatic_adaptation_VonKries(
XYZ_w,\
XYZ_wr,\
transform):
"""
Compute the *chromatic adaptation* matrix from test viewing conditions
to reference viewing conditions.
Parameters
----------
XYZ_w
Test viewing conditions *CIE XYZ* tristimulus values of whitepoint.
XYZ_wr
Reference viewing conditions *CIE XYZ* tristimulus values of
whitepoint.
transform
Chromatic adaptation transform.
Returns
-------
:class:`numpy.ndarray`
Chromatic adaptation matrix :math:`M_{cat}`.
Notes
-----
+------------+-----------------------+---------------+
| **Domain** | **Scale - Reference** | **Scale - 1** |
+============+=======================+===============+
| ``XYZ_w`` | [0, 1] | [0, 1] |
+------------+-----------------------+---------------+
| ``XYZ_wr`` | [0, 1] | [0, 1] |
+------------+-----------------------+---------------+
References
----------
:cite:`Fairchild2013t`
Examples
--------
>>> XYZ_w = np.array([0.95045593, 1.00000000, 1.08905775])
>>> XYZ_wr = np.array([0.96429568, 1.00000000, 0.82510460])
>>> matrix_chromatic_adaptation_VonKries(XYZ_w, XYZ_wr)
... # doctest: +ELLIPSIS
array([[ 1.0425738..., 0.0308910..., -0.0528125...],
[ 0.0221934..., 1.0018566..., -0.0210737...],
[-0.0011648..., -0.0034205..., 0.7617890...]])
Using Bradford method:
>>> XYZ_w = np.array([0.95045593, 1.00000000, 1.08905775])
>>> XYZ_wr = np.array([0.96429568, 1.00000000, 0.82510460])
>>> method = 'Bradford'
>>> matrix_chromatic_adaptation_VonKries(XYZ_w, XYZ_wr, method)
... # doctest: +ELLIPSIS
array([[ 1.0479297..., 0.0229468..., -0.0501922...],
[ 0.0296278..., 0.9904344..., -0.0170738...],
[-0.0092430..., 0.0150551..., 0.7518742...]])
"""
if(transform=='CAT02'):
M = CAT_CAT02
RGB_w = np.einsum("...i,...ij->...j", XYZ_w, np.transpose(M))
RGB_wr = np.einsum("...i,...ij->...j", XYZ_wr, np.transpose(M))
D = RGB_wr / RGB_w
D = np.expand_dims(D, -2)
D = np.eye(D.shape[-1]) * D
M_CAT = np.einsum("...ij,...jk->...ik",np.linalg.inv(M), D )
M_CAT = np.einsum("...ij,...jk->...ik",M_CAT, M )
return M_CAT
def xyY_to_XYZ(xyY):
"""
Convert from *CIE xyY* colourspace to *CIE XYZ* tristimulus values.
Parameters
----------
xyY
*CIE xyY* colourspace array.
Returns
-------
:class:`numpy.ndarray`
*CIE XYZ* tristimulus values.
Notes
-----
+------------+-----------------------+---------------+
| **Domain** | **Scale - Reference** | **Scale - 1** |
+============+=======================+===============+
| ``xyY`` | [0, 1] | [0, 1] |
+------------+-----------------------+---------------+
+------------+-----------------------+---------------+
| **Range** | **Scale - Reference** | **Scale - 1** |
+============+=======================+===============+
| ``XYZ`` | [0, 1] | [0, 1] |
+------------+-----------------------+---------------+
References
----------
:cite:`Lindbloom2009d`, :cite:`Wikipedia2005`
Examples
--------
>>> xyY = np.array([0.54369557, 0.32107944, 0.12197225])
>>> xyY_to_XYZ(xyY) # doctest: +ELLIPSIS
array([ 0.2065400..., 0.1219722..., 0.0513695...])
"""
x, y, Y = np.array([xyY[..., i] for i in range(xyY.shape[-1])])
XYZ = np.where(
(y == 0)[..., np.newaxis],
np.stack([y, y, y],-1),
np.stack([x * Y / y, Y, (1 - x - y) * Y / y],-1),
)
return XYZ
def xy_to_xyY(xy,Y=1):
"""
Convert from *CIE xy* chromaticity coordinates to *CIE xyY* colourspace by
extending the array last dimension with given :math:`Y` *luminance*.
``xy`` argument with last dimension being equal to 3 will be assumed to be
a *CIE xyY* colourspace array argument and will be returned directly by the
definition.
Parameters
----------
xy
*CIE xy* chromaticity coordinates or *CIE xyY* colourspace array.
Y
Optional :math:`Y` *luminance* value used to construct the *CIE xyY*
colourspace array, the default :math:`Y` *luminance* value is 1.
Returns
-------
:class:`numpy.ndarray`
*CIE xyY* colourspace array.
Notes
-----
+------------+-----------------------+---------------+
| **Domain** | **Scale - Reference** | **Scale - 1** |
+============+=======================+===============+
| ``xy`` | [0, 1] | [0, 1] |
+------------+-----------------------+---------------+
+------------+-----------------------+---------------+
| **Range** | **Scale - Reference** | **Scale - 1** |
+============+=======================+===============+
| ``xyY`` | [0, 1] | [0, 1] |
+------------+-----------------------+---------------+
- This definition is a convenient object provided to implement support of
illuminant argument *luminance* value in various :mod:`colour.models`
package objects such as :func:`colour.Lab_to_XYZ` or
:func:`colour.Luv_to_XYZ`.
References
----------
:cite:`Wikipedia2005`
Examples
--------
>>> xy = np.array([0.54369557, 0.32107944])
>>> xy_to_xyY(xy) # doctest: +ELLIPSIS
array([ 0.5436955..., 0.3210794..., 1. ])
>>> xy = np.array([0.54369557, 0.32107944, 1.00000000])
>>> xy_to_xyY(xy) # doctest: +ELLIPSIS
array([ 0.5436955..., 0.3210794..., 1. ])
>>> xy = np.array([0.54369557, 0.32107944])
>>> xy_to_xyY(xy, 100) # doctest: +ELLIPSIS
array([ 0.5436955..., 0.3210794..., 100. ])
"""
xy = np.asarray(xy).astype(np.float32)
Y = np.asarray(Y).astype(np.float32)
# Assuming ``xy`` is actually a *CIE xyY* colourspace array argument and
# returning it directly.
if xy.shape[-1] == 3:
return xy
x, y = xy[...,0],xy[...,1]
xyY = np.stack([x, y, np.full(x.shape, Y)],-1)
return xyY
def RGB_to_XYZ(RGB,illuminant_RGB,illuminant_XYZ,matrix_RGB_to_XYZ,chromatic_adaptation_transform,cctf_decoding):
"""
Convert given *RGB* colourspace array to *CIE XYZ* tristimulus values.
Parameters
----------
RGB
*RGB* colourspace array.
illuminant_RGB
*CIE xy* chromaticity coordinates or *CIE xyY* colourspace array of the
*illuminant* for the input *RGB* colourspace array.
illuminant_XYZ
*CIE xy* chromaticity coordinates or *CIE xyY* colourspace array of the
*illuminant* for the output *CIE XYZ* tristimulus values.
matrix_RGB_to_XYZ
Matrix converting the *RGB* colourspace array to *CIE XYZ* tristimulus
values, i.e. the *Normalised Primary Matrix* (NPM).
chromatic_adaptation_transform
*Chromatic adaptation* transform, if *None* no chromatic adaptation is
performed.
cctf_decoding
Decoding colour component transfer function (Decoding CCTF) or
electro-optical transfer function (EOTF).
Returns
-------
:class:`numpy.ndarray`
*CIE XYZ* tristimulus values.
Notes
-----
+--------------------+-----------------------+---------------+
| **Domain** | **Scale - Reference** | **Scale - 1** |
+====================+=======================+===============+
| ``RGB`` | [0, 1] | [0, 1] |
+--------------------+-----------------------+---------------+
| ``illuminant_XYZ`` | [0, 1] | [0, 1] |
+--------------------+-----------------------+---------------+
| ``illuminant_RGB`` | [0, 1] | [0, 1] |
+--------------------+-----------------------+---------------+
+--------------------+-----------------------+---------------+
| **Range** | **Scale - Reference** | **Scale - 1** |
+====================+=======================+===============+
| ``XYZ`` | [0, 1] | [0, 1] |
+--------------------+-----------------------+---------------+
Examples
--------
>>> RGB = np.array([0.45595571, 0.03039702, 0.04087245])
>>> illuminant_RGB = np.array([0.31270, 0.32900])
>>> illuminant_XYZ = np.array([0.34570, 0.35850])
>>> chromatic_adaptation_transform = 'Bradford'
>>> matrix_RGB_to_XYZ = np.array(
... [[0.41240000, 0.35760000, 0.18050000],
... [0.21260000, 0.71520000, 0.07220000],
... [0.01930000, 0.11920000, 0.95050000]]
... )
>>> RGB_to_XYZ(RGB, illuminant_RGB, illuminant_XYZ, matrix_RGB_to_XYZ,
... chromatic_adaptation_transform) # doctest: +ELLIPSIS
array([ 0.2163881..., 0.1257 , 0.0384749...])
"""
if cctf_decoding is not None:
RGB = np.stack((eotf_PQ_BT2100(RGB[:,:,0]),eotf_PQ_BT2100(RGB[:,:,1]),eotf_PQ_BT2100(RGB[:,:,2])),axis=2)
XYZ = np.einsum("...ij,...j->...i", matrix_RGB_to_XYZ, RGB)
if chromatic_adaptation_transform is not None:
M_CAT = matrix_chromatic_adaptation_VonKries(
xyY_to_XYZ(xy_to_xyY(illuminant_RGB)),
xyY_to_XYZ(xy_to_xyY(illuminant_XYZ)),
transform=chromatic_adaptation_transform,
)
XYZ = np.einsum("...ij,...j->...i", M_CAT, XYZ)
return XYZ
def reaction_rate_MichaelisMenten_Michaelis1913(S,V_max,K_m):
v = (V_max * S) / (K_m + S)
return v
def lightness_Fairchild2010(Y, epsilon = 1.836):
"""
Compute *Lightness* :math:`L_{hdr}` of given *luminance* :math:`Y` using
*Fairchild and Wyble (2010)* method according to *Michaelis-Menten*
kinetics.
Parameters
----------
Y
*Luminance* :math:`Y`.
epsilon
:math:`\\epsilon` exponent.
Returns
-------
:class:`numpy.floating` or :class:`numpy.ndarray`
*Lightness* :math:`L_{hdr}`.
Notes
-----
+------------+-----------------------+---------------+
| **Domain** | **Scale - Reference** | **Scale - 1** |
+============+=======================+===============+
| ``Y`` | [0, 1] | [0, 1] |
+------------+-----------------------+---------------+
+------------+-----------------------+---------------+
| **Range** | **Scale - Reference** | **Scale - 1** |
+============+=======================+===============+
| ``L_hdr`` | [0, 100] | [0, 1] |
+------------+-----------------------+---------------+
References
----------
:cite:`Fairchild2010`
Examples
--------
>>> lightness_Fairchild2010(12.19722535 / 100) # doctest: +ELLIPSIS
31.9963902...
"""
maximum_perception = 100
L_hdr = (
reaction_rate_MichaelisMenten_Michaelis1913(
spow(Y, epsilon), maximum_perception, spow(0.184, epsilon)
)
+ 0.02
)
return L_hdr
def spow(a,p):
a_p = np.sign(a) * np.abs(a) ** p
a_p = np.nan_to_num(a_p)
return a_p
def lightness_Fairchild2011(Y,epsilon= 0.474,method= "hdr-CIELAB"):
"""
Compute *Lightness* :math:`L_{hdr}` of given *luminance* :math:`Y` using
*Fairchild and Chen (2011)* method according to *Michaelis-Menten*
kinetics.
Parameters
----------
Y
*Luminance* :math:`Y`.
epsilon
:math:`\\epsilon` exponent.
method
*Lightness* :math:`L_{hdr}` computation method.
Returns
-------
:class:`numpy.floating` or :class:`numpy.ndarray`
*Lightness* :math:`L_{hdr}`.
Notes
-----
+------------+-----------------------+---------------+
| **Domain** | **Scale - Reference** | **Scale - 1** |
+============+=======================+===============+
| ``Y`` | [0, 1] | [0, 1] |
+------------+-----------------------+---------------+
+------------+-----------------------+---------------+
| **Range** | **Scale - Reference** | **Scale - 1** |
+============+=======================+===============+
| ``L_hdr`` | [0, 100] | [0, 1] |
+------------+-----------------------+---------------+
References
----------
:cite:`Fairchild2011`
Examples
--------
>>> lightness_Fairchild2011(12.19722535 / 100) # doctest: +ELLIPSIS
51.8529584...
>>> lightness_Fairchild2011(12.19722535 / 100, method='hdr-IPT')
... # doctest: +ELLIPSIS
51.6431084...
"""
if method == "hdr-cielab":
maximum_perception = 247
else:
maximum_perception = 246
L_hdr = (
reaction_rate_MichaelisMenten_Michaelis1913(
spow(Y, epsilon), maximum_perception, spow(2, epsilon)
)
+ 0.02
)
return L_hdr
def exponent_hdr_CIELab(Y_s,Y_abs,method):
"""
Compute *hdr-CIELAB* colourspace *Lightness* :math:`\\epsilon` exponent
using *Fairchild and Wyble (2010)* or *Fairchild and Chen (2011)* method.
Parameters
----------
Y_s
Relative luminance :math:`Y_s` of the surround.
Y_abs
Absolute luminance :math:`Y_{abs}` of the scene diffuse white in
:math:`cd/m^2`.
method
Computation method.
Returns
-------
:class:`numpy.floating` or :class:`numpy.ndarray`
*hdr-CIELAB* colourspace *Lightness* :math:`\\epsilon` exponent.
Notes
-----
+------------+-----------------------+---------------+
| **Domain** | **Scale - Reference** | **Scale - 1** |
+============+=======================+===============+
| ``Y_s`` | [0, 1] | [0, 1] |
+------------+-----------------------+---------------+
Examples
--------
>>> exponent_hdr_CIELab(0.2, 100) # doctest: +ELLIPSIS
0.4738510...
>>> exponent_hdr_CIELab(0.2, 100, method='Fairchild 2010')
... # doctest: +ELLIPSIS
1.8360198...
"""
if method == "fairchild 2010":
epsilon = 1.50
else:
epsilon = 0.58
sf = 1.25 - 0.25 * (Y_s / 0.184)
lf = np.log(318) / np.log(Y_abs)
if method == "fairchild 2010":
epsilon *= sf * lf
else:
epsilon /= sf * lf
return epsilon
def XYZ_to_hdr_CIELab(XYZ,illuminant,Y_s,Y_abs,method):
X, Y, Z = XYZ[...,0],XYZ[...,1],XYZ[...,2]
XYZ_n = xyY_to_XYZ(xy_to_xyY(illuminant))
X_n, Y_n, Z_n = XYZ_n[...,0],XYZ_n[...,1],XYZ_n[...,2]
if method == "fairchild 2010":
lightness_callable = lightness_Fairchild2010
else:
lightness_callable = lightness_Fairchild2011
e = exponent_hdr_CIELab(Y_s, Y_abs, method)
# Domain and range scaling has already be handled.
L_hdr = lightness_callable(Y / Y_n, e)
a_hdr = 5 * (lightness_callable(X / X_n, e) - L_hdr)
b_hdr = 2 * (L_hdr - lightness_callable(Z / Z_n, e))
Lab_hdr = np.stack([L_hdr, a_hdr, b_hdr],-1)
return Lab_hdr