-
Notifications
You must be signed in to change notification settings - Fork 55
/
Copy patheuler72.py
executable file
·68 lines (59 loc) · 1.29 KB
/
euler72.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
#!/usr/bin/python
from math import ceil,sqrt
@profile
def gen_primes(n):
l = range(2,n)
primes = []
for j in range(0,len(l)):
p = True
for d in primes:
if(d > sqrt(l[j])):
break
if(l[j] % d == 0):
p = False
break;
if(p):
primes.append(l[j])
return primes
@profile
def factorize(n,primes):
factors = []
init_n = n
for p in primes:
while(n%p == 0):
n = n/p
factors.append(p)
if(p > sqrt(n)):
break
if(n > 1):
factors.append(n)
return factors
def phi(n,primes):
factors = factorize(n,primes)
p = 1
for i in range(2,n):
flag = True
for f in factors:
if i%f == 0:
flag = False
break
if flag:
p+=1
return p
@profile
def fast_phi(n,primes):
factors = factorize(n,primes)
phi = factors[0]-1
for i in range(1,len(factors)):
if(factors[i] == factors[i-1]):
phi *= (factors[i]-1)*(factors[i])/(factors[i]-1)
else:
phi *= (factors[i]-1)
return phi
primes = gen_primes(1000)
m = 10000
#m = 8
fraq = 0
for i in range(2,m+1):
fraq += fast_phi(i,primes)
print(fraq)