-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathpygeonet_compute_local_extremas.py
83 lines (79 loc) · 2.26 KB
/
pygeonet_compute_local_extremas.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
import numpy as np
def find_local_extremas(x):
x = np.asarray(x)
xmax = np.asarray([])
imax = np.asarray([])
xmin = np.asarray([])
imin = np.asarray([])
Nt = x.size
if len(x) != max(x.shape):
raise 'Entry must be a vector.'
index_nan = np.argwhere(np.isnan(x))
index = np.arange(len(x))
if len(index_nan) != 0:
index = index[~np.isnan(x)]
x = x[~np.isnan(x)]
Nt = x.size
dx = np.diff(x)
if not np.any(dx):
print "This XS is an horizontal line"
return [[0],[0],[0],[0]]
a = np.array(np.where(dx!=0)).flatten()
lm = np.array(np.where(np.diff(a)!=1)).flatten()
if lm.size > 0:
lm = lm+1
d = a[lm] - a[lm-1]
a[lm] = a[lm] - np.floor(d/2)
a = np.append(a,Nt-1)
xa = x[a]
b = np.where(np.diff(xa)>0,1,0)
xb = np.diff(b)
imax = np.array(np.where(xb == -1)).flatten()
if imax.size > 0:
imax = imax+1
imax = a[imax]
imin = np.array(np.where(xb == 1)).flatten()
if imax.size > 0:
imin = imin+1
imin = a[imin]
nmaxi = imax.size
nmini = imin.size
if nmaxi == 0 and nmini == 0:
if x[0] > x[-1]:
xmax = [x[0]]
imax = [index[0]]
xmin = [x[-1]]
imin = [index[-1]]
elif x[0] < x[-1]:
xmax = [x[-1]]
imax = [index[-1]]
xmin = [x[0]]
imin = [index[0]]
return [xmax,imax,xmin,imin]
if nmaxi == 0:
imax = [0,Nt-1]
elif nmini == 0:
imin = [0,Nt-1]
else:
if imax[0] < imin[0]:
imin = np.insert(imin,0,0)
else:
imax = np.insert(imax,0,0)
if imax[-1] > imin[-1]:
imin = np.append(imin,Nt-1)
else:
imax = np.append(imax,Nt-1)
xmax = x[imax]
xmin = x[imin]
if len(index_nan) != 0:
imax = index[imax]
imin = index[imin]
imax = np.reshape(imax,xmax.shape)
imin = np.reshape(imin,xmin.shape)
inmax = np.argsort(-xmax)
xmax = xmax[inmax]
imax = imax[inmax]
inmin = np.argsort(xmin)
xmin = xmin[inmin]
imin = imin[inmin]
return [xmax,imax,xmin,imin]