forked from fastmachinelearning/hls4ml-tutorial
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathnn_utils.py
360 lines (303 loc) · 12.3 KB
/
nn_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
import json
import os
import pickle as pkl
import random
from io import BytesIO
from pathlib import Path
from typing import Callable
import h5py as h5
import numpy as np
import tensorflow as tf
import zstd
from HGQ.bops import trace_minmax
from keras.layers import Dense
from keras.src.layers.convolutional.base_conv import Conv
from keras.src.saving.legacy import hdf5_format
from matplotlib import pyplot as plt
from tensorflow import keras
from tqdm.auto import tqdm
class NumpyFloatValuesEncoder(json.JSONEncoder):
def default(self, obj):
if isinstance(obj, np.float32): # type: ignore
return float(obj)
return json.JSONEncoder.default(self, obj)
class SaveTopN(keras.callbacks.Callback):
def __init__(
self,
metric_fn: Callable[[dict], float],
n: int,
path: str | Path,
side: str = 'max',
fname_format='epoch={epoch}-metric={metric:.4e}.h5',
cond_fn: Callable[[dict], bool] = lambda x: True,
):
self.n = n
self.metric_fn = metric_fn
self.path = Path(path)
self.fname_format = fname_format
os.makedirs(path, exist_ok=True)
self.weight_paths = np.full(n, '/dev/null', dtype=object)
if side == 'max':
self.best = np.full(n, -np.inf)
self.side = np.greater
elif side == 'min':
self.best = np.full(n, np.inf)
self.side = np.less
self.cond = cond_fn
def on_epoch_end(self, epoch, logs=None):
assert isinstance(logs, dict)
assert isinstance(self.model, keras.models.Model)
logs = logs.copy()
logs['epoch'] = epoch
if not self.cond(logs):
return
metric = self.metric_fn(logs)
if self.side(metric, self.best[-1]):
try:
os.remove(self.weight_paths[-1])
except OSError:
pass
logs['metric'] = metric
fname = self.path / self.fname_format.format(**logs)
self.best[-1] = metric
self.weight_paths[-1] = fname
self.model.save_weights(fname)
with h5.File(fname, 'r+') as f:
log_str = json.dumps(logs, cls=NumpyFloatValuesEncoder)
f.attrs['train_log'] = log_str
idx = np.argsort(self.best)
if self.side == np.greater:
idx = idx[::-1]
self.best = self.best[idx]
self.weight_paths = self.weight_paths[idx]
def rename_ckpts(self, dataset, bsz=65536):
assert self.weight_paths[0] != '/dev/null', 'No checkpoints to rename'
assert isinstance(self.model, keras.models.Model)
weight_buf = BytesIO()
with h5.File(weight_buf, 'w') as f:
hdf5_format.save_weights_to_hdf5_group(f, self.model)
weight_buf.seek(0)
for i, path in enumerate(tqdm(self.weight_paths, desc='Renaming checkpoints')):
if path == '/dev/null':
continue
self.model.load_weights(path)
bops = trace_minmax(self.model, dataset, bsz=bsz, verbose=False)
with h5.File(path, 'r+') as f:
logs = json.loads(f.attrs['train_log']) # type: ignore
logs['bops'] = bops
metric = self.metric_fn(logs)
logs['metric'] = metric
f.attrs['train_log'] = json.dumps(logs, cls=NumpyFloatValuesEncoder)
self.best[i] = metric
new_fname = self.path / self.fname_format.format(**logs)
os.rename(path, new_fname)
self.weight_paths[i] = new_fname
idx = np.argsort(self.best)
self.best = self.best[idx]
self.weight_paths = self.weight_paths[idx]
with h5.File(weight_buf, 'r') as f:
hdf5_format.load_weights_from_hdf5_group_by_name(f, self.model)
class PBarCallback(tf.keras.callbacks.Callback):
def __init__(self, metric='loss: {loss:.2f}/{val_loss:.2f}'):
self.pbar = None
self.template = metric
def on_epoch_begin(self, epoch, logs=None):
if self.pbar is None:
self.pbar = tqdm(total=self.params['epochs'], unit='epoch')
def on_epoch_end(self, epoch, logs=None):
assert isinstance(self.pbar, tqdm)
assert isinstance(logs, dict)
self.pbar.update(1)
string = self.template.format(**logs)
if 'bops' in logs:
string += f' - BOPs: {logs["bops"]:,.0f}'
self.pbar.set_description(string)
def on_train_end(self, logs=None):
if self.pbar is not None:
self.pbar.close()
def plot_history(histry: dict, metrics=('loss', 'val_loss'), ylabel='Loss', logy=False):
fig, ax = plt.subplots()
for metric in metrics:
ax.plot(histry[metric], label=metric)
ax.set_xlabel('Epoch')
ax.set_ylabel(ylabel)
if logy:
ax.set_yscale('log')
ax.legend()
return fig, ax
def save_model(model: keras.models.Model, path: str):
_path = Path(path)
model.save(path)
if model.history is not None:
history = model.history.history
else:
history = {}
with open(_path.with_suffix('.history'), 'wb') as f:
f.write(zstd.compress(pkl.dumps(history)))
def load_model(path: str, co=None):
_path = Path(path)
model: keras.Model = keras.models.load_model(path, custom_objects=co) # type: ignore
with open(_path.with_suffix('.history'), 'rb') as f:
history: dict[str, list] = pkl.loads(zstd.decompress(f.read()))
return model, history
def save_history(history, path):
with open(path, 'wb') as f:
f.write(zstd.compress(pkl.dumps(history)))
def load_history(path):
with open(path, 'rb') as f:
history = pkl.loads(zstd.decompress(f.read()))
return history
def absorb_batchNorm(model_target, model_original):
for layer in model_target.layers:
if layer.__class__.__name__ == 'Functional':
absorb_batchNorm(layer, model_original.get_layer(layer.name))
continue
if (
(isinstance(layer, Dense) or isinstance(layer, Conv))
and len(nodes := model_original.get_layer(layer.name)._outbound_nodes) > 0
and isinstance(nodes[0].outbound_layer, keras.layers.BatchNormalization)
):
_gamma, _beta, _mu, _var = model_original.get_layer(layer.name)._outbound_nodes[0].outbound_layer.get_weights()
_ratio = _gamma / np.sqrt(0.001 + _var)
_bias = -_gamma * _mu / np.sqrt(0.001 + _var) + _beta
k, *_b = model_original.get_layer(layer.name).get_weights()
if _b:
b = _b[0]
else:
b = np.zeros(layer.output_shape[-1])
nk = np.einsum('...c, c-> ...c', k, _ratio, optimize=True)
nb = np.einsum('...c, c-> ...c', b, _ratio, optimize=True) + _bias
extras = layer.get_weights()[2:]
layer.set_weights([nk, nb, *extras])
elif hasattr(layer, 'kernel'):
for w in layer.weights:
if '_bw' not in w.name:
break
else:
continue
weights = layer.get_weights()
new_weights = model_original.get_layer(layer.name).get_weights()
l = len(new_weights) # noqa: E741 # If l looks like 1 by any chance, change your font.
layer.set_weights([*new_weights, *weights[l:]][: len(weights)])
def set_seed(seed):
np.random.seed(seed)
tf.random.set_seed(seed)
os.environ['PYTHONHASHSEED'] = str(seed)
random.seed(seed)
tf.config.experimental.enable_op_determinism()
def get_best_ckpt(save_path: Path, take_min=False):
ckpts = list(save_path.glob('*.h5'))
def rank(ckpt: Path):
with h5.File(ckpt, 'r') as f:
log: dict = f.attrs['train_log'] # type: ignore
log = json.loads(log) # type: ignore
metric = log['metric'] # type: ignore
return metric
ckpts = sorted(ckpts, key=rank, reverse=not take_min)
ckpt = ckpts[0]
return ckpt
class PeratoFront(keras.callbacks.Callback):
def __init__(
self,
path: str | Path,
fname_format: str,
metrics_names: list[str],
sides: list[int],
cond_fn: Callable[[dict], bool] = lambda x: True,
):
self.path = Path(path)
self.fname_format = fname_format
os.makedirs(path, exist_ok=True)
self.paths = []
self.metrics = []
self.metric_names = metrics_names
self.sides = np.array(sides)
self.cond_fn = cond_fn
def on_epoch_end(self, epoch, logs=None):
assert isinstance(self.model, keras.models.Model)
assert isinstance(logs, dict)
logs = logs.copy()
logs['epoch'] = epoch
if not self.cond_fn(logs):
return
new_metrics = np.array([logs[metric_name] for metric_name in self.metric_names])
_rm_idx = []
for i, old_metrics in enumerate(self.metrics):
_old_metrics = self.sides * old_metrics
_new_metrics = self.sides * new_metrics
if np.all(_new_metrics <= _old_metrics):
return
if np.all(_new_metrics >= _old_metrics):
_rm_idx.append(i)
for i in _rm_idx[::-1]:
self.metrics.pop(i)
p = self.paths.pop(i)
os.remove(p)
path = self.path / self.fname_format.format(**logs)
self.metrics.append(new_metrics)
self.paths.append(path)
self.model.save_weights(self.paths[-1])
with h5.File(path, 'r+') as f:
log_str = json.dumps(logs, cls=NumpyFloatValuesEncoder)
f.attrs['train_log'] = log_str
def rename_ckpts(self, dataset, bsz=65536):
assert isinstance(self.model, keras.models.Model)
weight_buf = BytesIO()
with h5.File(weight_buf, 'w') as f:
hdf5_format.save_weights_to_hdf5_group(f, self.model)
weight_buf.seek(0)
for i, path in enumerate(tqdm(self.paths, desc='Renaming checkpoints')):
self.model.load_weights(path)
bops = trace_minmax(self.model, dataset, bsz=bsz, verbose=False)
with h5.File(path, 'r+') as f:
logs = json.loads(f.attrs['train_log']) # type: ignore
logs['bops'] = bops
f.attrs['train_log'] = json.dumps(logs, cls=NumpyFloatValuesEncoder)
metrics = np.array([logs[metric_name] for metric_name in self.metric_names])
self.metrics[i] = metrics
new_fname = self.path / self.fname_format.format(**logs)
os.rename(path, new_fname)
self.paths[i] = new_fname
with h5.File(weight_buf, 'r') as f:
hdf5_format.load_weights_from_hdf5_group_by_name(f, self.model)
class BetaScheduler(keras.callbacks.Callback):
def __init__(self, beta_fn: Callable[[int], float]):
self.beta_fn = beta_fn
def on_epoch_begin(self, epoch, logs=None):
assert isinstance(self.model, keras.models.Model)
beta = self.beta_fn(epoch)
for layer in self.model.layers:
if hasattr(layer, 'beta'):
layer.beta.assign(keras.backend.constant(beta, dtype=keras.backend.floatx()))
def on_epoch_end(self, epoch, logs=None):
assert isinstance(logs, dict)
logs['beta'] = self.beta_fn(epoch)
@classmethod
def from_config(cls, config):
return cls(get_schedule(config.beta, config.train.epochs))
def get_schedule(beta_conf, total_epochs):
epochs = []
betas = []
interpolations = []
for block in beta_conf.intervals:
epochs.append(block.epochs)
betas.append(block.betas)
interpolation = block.interpolation
assert interpolation in ['linear', 'log']
interpolations.append(interpolation == 'log')
epochs = np.array(epochs + [total_epochs])
assert np.all(np.diff(epochs) >= 0)
betas = np.array(betas)
interpolations = np.array(interpolations)
def schedule(epoch):
if epoch >= total_epochs:
return betas[-1, -1]
idx = np.searchsorted(epochs, epoch, side='right') - 1
beta0, beta1 = betas[idx]
epoch0, epoch1 = epochs[idx], epochs[idx + 1]
if interpolations[idx]:
beta = beta0 * (beta1 / beta0) ** ((epoch - epoch0) / (epoch1 - epoch0))
else:
beta = beta0 + (beta1 - beta0) * (epoch - epoch0) / (epoch1 - epoch0)
return float(beta)
return schedule