-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathq0403.cc
114 lines (98 loc) · 3.36 KB
/
q0403.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
// Copyright 2023 Naon Lu
//
// This file describes the solution of
// Frog Jump
//
// https://leetcode.com/problems/frog-jump/
//
// Question ID: 403
// Difficult : Hard
// Solve Date : 2023/08/27 14:04
#include <iosfwd>
#include <vector>
// -- This header must be included after others --
#include "leetcode/testing/solution_test_helper.h"
using namespace std;
using namespace lcd;
// Description of |403. Frog Jump|:
//
// A frog is crossing a river. The river is divided into some number of units,
// and at each unit, there may or may not exist a stone. The frog can jump on a
// stone, but it must not jump into the water. Given a list of |stones|'
// positions (in units) in sorted ascending order, determine if the frog can
// cross the river by landing on the last stone. Initially, the frog is on the
// first stone and assumes the first jump must be |1| unit. If the frog's last
// jump was |k| units, its next jump must be either |k - 1|, |k|, or |k + 1|
// units. The frog can only jump in the forward direction.
//
//
LEETCODE_BEGIN_RESOLVING(403, FrogJump, Solution);
class Solution {
public:
bool canCross(vector<int> &stones) {
vector<vector<int>> dp(stones.size(), vector<int>(stones.size() + 1, -1));
return helper(stones, 0, 0, &dp);
}
private:
bool helper(const vector<int> &stones, int i, int k,
vector<vector<int>> *dp) {
if (i == stones.size() - 1) {
return true;
}
if (i >= stones.size()) {
return false;
}
if ((*dp)[i][k] != -1) {
return (*dp)[i][k];
}
int res = false;
for (auto j : {k - 1, k, k + 1}) {
if (j == 0) {
continue;
}
auto nxt =
lower_bound(stones.begin() + (i + 1), stones.end(), stones[i] + j);
if (nxt == stones.end() || *nxt != stones[i] + j) {
continue;
}
res |= helper(stones, distance(stones.begin(), nxt), j, dp);
}
return (*dp)[i][k] = res;
}
};
LEETCODE_END_RESOLVING(Solution);
///////////////////////////////////////////////////////////////////////////////
// The following is test data for unit test.
// Note that inputs should obey the constraints mentioned in LeetCode:
// * |2 <= stones.length <= 2000|
// * |0 <= stones[i] <= 2³¹ - 1|
// * |stones[0] == 0|
// * |stones| is sorted in a strictly increasing order.
///////////////////////////////////////////////////////////////////////////////
// [Example #1]
// Input: stones = [0,1,3,5,6,8,12,17]
// Output: true
//
// The frog can jump to the last stone by jumping 1 unit to the 2nd stone, then
// 2 units to the 3rd stone, then 2 units to the 4th stone, then 3 units to the
// 6th stone, 4 units to the 7th stone, and 5 units to the 8th stone.
LEETCODE_SOLUTION_UNITTEST(403, FrogJump, example_1) {
auto solution = MakeSolution();
vector<int> stones = {0, 1, 3, 5, 6, 8, 12, 17};
bool expect = true;
bool actual = solution->canCross(stones);
LCD_EXPECT_EQ(expect, actual);
}
// [Example #2]
// Input: stones = [0,1,2,3,4,8,9,11]
// Output: false
//
// There is no way to jump to the last stone as the gap between the 5th and 6th
// stone is too large.
LEETCODE_SOLUTION_UNITTEST(403, FrogJump, example_2) {
auto solution = MakeSolution();
vector<int> stones = {0, 1, 2, 3, 4, 8, 9, 11};
bool expect = false;
bool actual = solution->canCross(stones);
LCD_EXPECT_EQ(expect, actual);
}