-
Notifications
You must be signed in to change notification settings - Fork 0
/
val.py
32 lines (25 loc) · 1.11 KB
/
val.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
import numpy as np
from sklearn.metrics import confusion_matrix, plot_confusion_matrix, accuracy_score, f1_score, precision_score, recall_score, zero_one_loss, precision_recall_fscore_support
import torch
from torch import nn
def validate(model, test_data, label_dict, embedding_database, label_database):
predictions = []
labels = []
paths = []
model.eval()
embedding_database_tensor = torch.Tensor(embedding_database).cuda()
for it, (img, label, path) in enumerate(test_data):
b_images = img.cuda()
label = label.cuda()
with torch.no_grad():
emb, logits = model(b_images)
logit = nn.Softmax(dim=-1)(logits)
pred = torch.argmax(logit, dim=1)
actual_pred = [label_dict[k] for k in pred.cpu().numpy()]
predictions.extend(actual_pred)
labels.extend(label.cpu().numpy())
paths.extend(path)
acc = accuracy_score(np.array(labels), np.array(predictions))
C = confusion_matrix(np.array(labels), np.array(predictions))
C_norm = C/C.astype(np.float).sum(axis=1, keepdims=True)
return acc, C_norm