-
Notifications
You must be signed in to change notification settings - Fork 175
/
Copy pathData_Loader_MIMIC.py
217 lines (167 loc) · 5.83 KB
/
Data_Loader_MIMIC.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
'''
Jinsung Yoon (09/06/2018)
Data Loading
'''
import pickle as pickle
import numpy as np
#%% Necessary Packages
#%% Google data loading
'''
1. train_rate: training / testing set ratio
2. missing_rate: the amount of introducing missingness
'''
def Data_Loader_MIMIC(train_rate = 0.8, missing_rate = 0.2, window = 48, start_end = 'Start'):
#%%
# Input data
with open('/home/vdslab/Documents/Jinsung/MRNN/MRNN_Final_Revision/Data/MIMIC_Data.pkl.gz', 'rb') as f:
[Id, Label, Static_data, timestamp, ts] = pickle.load(f, encoding='latin1')
No = len(Id)
Train_No = int(0.8*No)
trainX = ts[:Train_No]
testX = ts[Train_No:No]
trainY = Label[:Train_No]
testY = Label[Train_No:No]
trainT = timestamp[:Train_No]
testT = timestamp[Train_No:No]
trainN = len(trainT)
testN = len(testT)
# Length of stay for each patient
trainL = np.zeros([trainN,])
for i in range(trainN):
trainL[i] = len(trainT[i])
# Remove patients with less than window length of stay
idx = np.where(trainL >= window)[0]
trainX = [trainX[i] for i in idx]
trainY = trainY[idx]
trainT = [trainT[i] for i in idx]
trainN = len(trainY)
# Length of stay for each patient
testL = np.zeros([testN,])
for i in range(testN):
testL[i] = len(testT[i])
# Remove patients with less than window length of stay
idx = np.where(testL >= window)[0]
testX = [testX[i] for i in idx]
testY = testY[idx]
testT = [testT[i] for i in idx]
testN = len(testY)
# Only use the admission to admission + window
for i in range(trainN):
if start_end == 'Start':
Temp = trainX[i][:window,:]
trainX[i] = Temp
Temp = trainT[i][:window]
trainT[i] = Temp
if start_end == 'End':
Temp = trainX[i][-window:,:]
trainX[i] = Temp
Temp = trainT[i][-window:]
trainT[i] = Temp
for i in range(testN):
if start_end == 'Start':
Temp = testX[i][:window,:]
testX[i] = Temp
Temp = testT[i][:window]
testT[i] = Temp
if start_end == 'End':
Temp = testX[i][-window:,:]
testX[i] = Temp
Temp = testT[i][-window:]
testT[i] = Temp
# Make object to list
New_trainX = list()
New_trainT = list()
for i in range(trainN):
New_trainX.append(trainX[i])
New_trainT.append(trainT[i])
New_testX = list()
New_testT = list()
for i in range(testN):
New_testX.append(testX[i])
New_testT.append(testT[i])
trainX = New_trainX
testX = New_testX
#%% Normalization
Col_No = len(trainX[0][0,:])
Min_Val = np.ones([Col_No,]) * 100000
Max_Val = np.ones([Col_No,]) * -100000
for i in range(trainN):
Temp = trainX[i]
Temp_Max = np.max(Temp,0)
Temp_Min = np.min(Temp,0)
for j in range(Col_No):
if (Temp_Max[j] > Max_Val[j]):
Max_Val[j] = Temp_Max[j]
if (Temp_Min[j] < Min_Val[j]):
Min_Val[j] = Temp_Min[j]
for i in range(testN):
Temp = testX[i]
Temp_Max = np.max(Temp,0)
Temp_Min = np.min(Temp,0)
for j in range(Col_No):
if (Temp_Max[j] > Max_Val[j]):
Max_Val[j] = Temp_Max[j]
if (Temp_Min[j] < Min_Val[j]):
Min_Val[j] = Temp_Min[j]
#%%
for i in range(trainN):
Temp = trainX[i]
for j in range(Col_No):
Temp[:,j] = Temp[:,j] - Min_Val[j]
if (Max_Val[j] - Min_Val[j] > 0):
Temp[:,j] = Temp[:,j] / (Max_Val[j] - Min_Val[j])
trainX[i] = Temp
for i in range(testN):
Temp = testX[i]
for j in range(Col_No):
Temp[:,j] = Temp[:,j] - Min_Val[j]
if (Max_Val[j] - Min_Val[j] > 0):
Temp[:,j] = Temp[:,j] / (Max_Val[j] - Min_Val[j])
testX[i] = Temp
#%%
# Make object to list
dataX = list()
for i in range(trainN):
dataX.append(trainX[i])
for i in range(testN):
dataX.append(testX[i])
#%%
seq_length = window
col_no = Col_No
row_no = len(dataX)
#%% Introduce Missingness (MCAR)
dataZ = []
dataM = []
dataT = []
for i in range(row_no):
#%% Missing matrix construct
temp_m = np.random.uniform(0,1,[seq_length, col_no])
m = np.zeros([seq_length, col_no])
m[np.where(temp_m >= missing_rate)] = 1
dataM.append(m)
#%% Introduce missingness to the original data
z = np.copy(dataX[i])
z[np.where(m==0)] = 0
dataZ.append(z)
#%% Time gap generation
t = np.ones([seq_length, col_no])
for j in range(col_no):
for k in range(seq_length):
if (k > 0):
if (m[k,j] == 0):
t[k,j] = t[k-1,j] + 1
dataT.append(t)
#%% Building the dataset
'''
X: Original Feature
Z: Feature with Missing
M: Missing Matrix
T: Time Gap
'''
#%% Train / Test Division
train_size = int(len(dataX) * train_rate)
trainX, testX = np.array(dataX[0:train_size]), np.array(dataX[train_size:len(dataX)])
trainZ, testZ = np.array(dataZ[0:train_size]), np.array(dataZ[train_size:len(dataX)])
trainM, testM = np.array(dataM[0:train_size]), np.array(dataM[train_size:len(dataX)])
trainT, testT = np.array(dataT[0:train_size]), np.array(dataT[train_size:len(dataX)])
return [trainX, trainZ, trainM, trainT, testX, testZ, testM, testT]