AutoPrognosis: Automated Clinical Prognostic Modeling via Bayesian Optimization with Structured Kernel Learning
AutoPrognosis: A system for automating the design of predictive modeling pipelines tailored for clinical prognosis.
See <project_dir>/doc/install.md for installation instructions
You can find a presentation by Prof. van der Schaar describing AutoPrognosis here: https://www.youtube.com/watch?v=d1uEATa0qIo
python3 autoprognosis.py -i <data.csv> --target <response variable> -o <outdir> [ -n <num_sample> --it <num_iterations> ]
The results can be found in two json files: /result.json and report.json. They can be shown with:
python3 autoprognosis_report.py -i <outdir>
See also jupyter notebooks tutorial_autoprognosis_*.ipynb
mkdir result # directory where the results generated by autoprognosis are stored
python3 autoprognosis.py -i ../../data/spambase.csv.gz --target label -o result --acquisitiontype MPI
python3 autoprognosis_report.py -i result --verbose 0 # --verbose 1 sorts by classifiers *and* parameters
- Acquisition function LCB generates excesive warnings "The set cost function is ignored! LCB acquisition does not make sense with cost.". This can be ignored.
- AutoPrognosis: Automated Clinical Prognostic Modeling via Bayesian Optimization with Structured Kernel Learning
- Prognostication and Risk Factors for Cystic Fibrosis via Automated Machine Learning
- Cardiovascular Disease Risk Prediction using Automated Machine Learning: A Prospective Study of 423,604 UK Biobank Participants