Skip to content

Latest commit

 

History

History

r2p-hte

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 
 
 
 
 
 
 

Robust Recursive Partitioning for Heterogeneous Treatment Effects with Uncertainty Quantification

Python implementation of the robust recursive partitioning method for heterogeneous treatment effects (R2P-HTE).

Authors: Hyun-Suk Lee, Yao Zhang, William Zame, Cong Shen, Jang-Won Lee, and Mihaela van der Schaar

Paper Link: https://arxiv.org/abs/2006.07917

Requirements

This implementation is based on Python 3.6 (requirements.txt is included). It requires the causal multi-task Gaussian process (CMGP) model in [1,url] and the conformal prediction framework [2,url]. The data generating function of the synthetic datasets (SYNTH_A and SYNTH_B) is implemented within this implementation. The exogenous semi-synthetic datasets (i.e., the IHDP and CPP datasets introduced in [3] and [4], respectively) are required.

Usage

run_experiment.py --data DATA [--file_path FILE_PATH] [--max_depth MAX_DEPTH] [--min_size MIN_SIZE] [--miscoverage MISCOVERAGE] [--weight WEIGHT] [--gamma GAMMA]

Required argument:

  • --data: types of dataset {SYNTH_A, SYNTH_B, IHDP, CPP}

Optional arguments:

  • --file_path: file path of dataset (for IHDP and CPP datasets)
  • --max_depth: maximum depth of partition (-1 for no limits)
  • --min_size: minimum number of samples for each subgroup
  • --miscoverage: target miscoverage rate
  • --weight: weight parameter (lambda)
  • --gamma: regularization parameter (gamma)

Example

python run_experiment.py --data SYNTH_B

Results

This implementation produces the results of R2P in Table 1 and Table 2 in the paper.

References

  1. A. M. Alaa and M. van der Schaar, "Bayesian inference of individualized treatment effects using multi-task Gaussian processes," NIPS, 2017
  2. V. Vovk, A. Gammerman, and G. Shafer, "Algorithmic learning in a random world," Springer Science & Business Media, 2005.
  3. J. L. Hill, "Bayesian nonparametric modeling for causal inference," Journal of Computational and Graphical Statistics, 20(1), 217-240, 2011.
  4. V. Dorie, J. Hill, U. Shalit, M. Scott, and D. Cervone, "Automated versus do-it-yourself methods for causal inference: Lessons learned from a data analysis competition," Statistical Science, 34(1), 43-68, 2019.