-
Notifications
You must be signed in to change notification settings - Fork 9
/
utils.py
368 lines (308 loc) · 11.2 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
import os
import sys
import glob
import json
import logging
import shutil
import numpy as np
import matplotlib.pyplot as plt
import time
import cv2
import math
from PIL import Image, ImageOps
import skimage.transform
import torch
import torch.nn as nn
import torch.nn.init as init
def psnr(img1, img2):
assert len(img1.shape) <= 3
assert len(img2.shape) <= 3
img1, img2 = img1.astype(np.float32), img2.astype(np.float32)
mse = np.mean((img1 - img2)**2)
if mse == 0:
return float('inf')
return 20 * math.log10(255.0 / math.sqrt(mse))
def ssim(prediction, target):
C1 = (0.01 * 255)**2
C2 = (0.03 * 255)**2
img1 = prediction.astype(np.float64)
img2 = target.astype(np.float64)
kernel = cv2.getGaussianKernel(11, 1.5)
window = np.outer(kernel, kernel.transpose())
mu1 = cv2.filter2D(img1, -1, window)[5:-5, 5:-5] # valid
mu2 = cv2.filter2D(img2, -1, window)[5:-5, 5:-5]
mu1_sq = mu1**2
mu2_sq = mu2**2
mu1_mu2 = mu1 * mu2
sigma1_sq = cv2.filter2D(img1**2, -1, window)[5:-5, 5:-5] - mu1_sq
sigma2_sq = cv2.filter2D(img2**2, -1, window)[5:-5, 5:-5] - mu2_sq
sigma12 = cv2.filter2D(img1 * img2, -1, window)[5:-5, 5:-5] - mu1_mu2
ssim_map = ((2 * mu1_mu2 + C1) * (2 * sigma12 + C2)) / ((mu1_sq + mu2_sq + C1) * (sigma1_sq + sigma2_sq + C2))
return ssim_map.mean()
def shot_noise(im, snr):
full_well = 10.**(snr / 20.)
photon_count = im * full_well
poisson_photon_count = torch.poisson(photon_count)
return poisson_photon_count / full_well
def bgr2ycbcr(img_, only_y=True):
'''same as matlab rgb2ycbcr
only_y: only return Y channel
Input:
uint8, [0, 255]
float, [0, 1]
Output:
type is same as input
unit8, [0, 255]
float, [0, 1]
'''
img = np.copy(img_)
in_img_type = img.dtype
img.astype(np.float32)
if in_img_type != np.uint8:
img *= 255.
# convert
if only_y:
rlt = np.dot(img, [24.966, 128.553, 65.481]) / 255.0 + 16.0
else:
rlt = np.matmul(img, [[24.966, 112.0, -18.214], [128.553, -74.203, -93.786],
[65.481, -37.797, 112.0]]) / 255.0 + [16, 128, 128]
if in_img_type == np.uint8:
rlt = rlt.round()
else:
rlt /= 255.
return rlt.astype(in_img_type)
def rgb2normalizedLab(img_):
# Convert to bgr format
img = img_[:, :, ::-1]
# Convert to L*a*b* format
img = cv2.cvtColor(img, cv2.COLOR_BGR2LAB)
# Normalize the lab image to [0, 1] range
img[:, :, 0] = img[:, :, 0] / 100.
img[:, :, 1] = (img[:, :, 1] + 128.) / 255.
img[:, :, 2] = (img[:, :, 2] + 128.) / 255.
return img
def normalizedLab2rgb(img_):
# Scale normlab image to original L*a*b* range
img = img_.copy()
img[:, :, 0] = img[:, :, 0] * 100.
img[:, :, 1] = (img[:, :, 1] * 255.) - 128.
img[:, :, 2] = (img[:, :, 2] * 255.) - 128.
# Convert to rgb format
img = cv2.cvtColor(img, cv2.COLOR_LAB2RGB)
return img
def tensor_rgb2lab(rgb):
T, C, H, W = rgb.shape
# Convert to L*a*b* space
lab = []
for t in range(T):
frm_rgb = np.transpose(rgb[t, :, :, :].numpy(), (1, 2, 0)) # [H, W, C]
frm_lab = rgb2normalizedLab(frm_rgb)
frm_lab = np.transpose(frm_lab, (2, 0, 1)) # [C, H, W]
lab.append(torch.from_numpy(frm_lab))
return torch.stack(lab, dim=0)
def tensor_lab2rgb(out):
out = out.clone().numpy()
out_rgb = np.zeros(out.shape)
for i, sample in enumerate(out):
for j, frm_lab in enumerate(sample):
frm_lab = np.transpose(frm_lab, (1, 2, 0)) # channels last
frm_rgb = normalizedLab2rgb(frm_lab)
frm_rgb = np.transpose(frm_rgb, (2, 0, 1)) # channels first
out_rgb[i, j, :, :, :] = frm_rgb
return torch.from_numpy(out_rgb)
def get_frame_paths(video_pth, frame_fmt='frame%d.png', start_num=0, end_num=None,
step=1):
frame_paths = []
frame_idx = start_num
while True:
frame_pth = os.path.join(video_pth, frame_fmt % frame_idx)
if (end_num is not None) and frame_idx >= end_num:
break
elif not os.path.exists(frame_pth):
break
else:
frame_paths.append(frame_pth)
frame_idx += step
return frame_paths
def bicubic_baseline(lr, upscale_factor):
"""
lr: [b, t, c, h, w]
out: [b, t, c, upscale_factor*h, upscale_factor*w]
"""
B, T, C, H, W = lr.shape
device = lr.device
out = []
for sample in lr:
s = []
for frm in sample:
frm = frm.permute(1, 2, 0).cpu().numpy()
frm = cv2.resize(frm, (upscale_factor*W, upscale_factor*H),
interpolation=cv2.INTER_CUBIC)
frm = torch.from_numpy(frm).to(device).permute(2, 0, 1)
s.append(frm)
s = torch.stack(s, dim=0)
out.append(s)
out = torch.stack(out, dim=0)
return out
def model_size(model):
return sum(p.numel() for p in model.parameters())
def initialize_weights(net_l, scale=0.1):
if not isinstance(net_l, list):
net_l = [net_l]
for net in net_l:
for m in net.modules():
if isinstance(m, nn.Conv2d):
init.kaiming_normal_(m.weight, a=0, mode='fan_in')
m.weight.data *= scale # for residual block
if m.bias is not None:
m.bias.data.zero_()
elif isinstance(m, nn.Linear):
init.kaiming_normal_(m.weight, a=0, mode='fan_in')
m.weight.data *= scale
if m.bias is not None:
m.bias.data.zero_()
elif isinstance(m, nn.BatchNorm2d):
init.constant_(m.weight, 1)
init.constant_(m.bias.data, 0.0)
def write_img(img, path):
"""
img: numpy array in the format [C, H, W] normalized to [0, 1].
C=1 in case of gray image, otherwise C=3 in the order RGB.
"""
assert len(img.shape) == 3
C, H, W = img.shape
img_ = (255. * img.clip(0., 1.)).round().astype(np.uint8)
img_ = img_.transpose((1, 2, 0)) # [H, W, C]
if C == 1:
img_ = img_.squeeze(2)
else:
img_ = img_[:, :, ::-1] # [H, W, BGR]
cv2.imwrite(path, img_)
def write_video(video, path, frame_fmt="frame%d.png", start_num=0,
end_num=None, step=1):
assert len(video.shape) == 4
T, C, H, W = video.shape
if end_num is None:
end_num = T * step
frame_numbers = range(start_num, end_num, step)
for frm, frm_num in zip(video, frame_numbers):
write_img(frm, os.path.join(path, frame_fmt % frm_num))
def format_lr_info(optimizer):
lr_info = ""
for i, pg in enumerate(optimizer.param_groups):
lr_info += " {group %d: params=%.5fM lr=%.1E}" % (
i, sum([p.numel() for p in pg['params']]) / (1024 ** 2), pg['lr'])
return lr_info
class Params():
"""Class that loads hyperparameters from a json file.
Example:
```
params = Params(json_path)
print(params.learning_rate)
params.learning_rate = 0.5 # change the value of learning_rate in params
```
"""
def __init__(self, json_path):
with open(json_path) as f:
params = json.load(f)
self.__dict__.update(params)
def save(self, json_path):
with open(json_path, 'w') as f:
json.dump(self.__dict__, f, indent=4)
def update(self, json_path):
"""Loads parameters from json file"""
with open(json_path) as f:
params = json.load(f)
self.__dict__.update(params)
@property
def dict(self):
"""Gives dict-like access to Params instance by `params.dict['learning_rate']"""
return self.__dict__
class RunningAverage():
"""A simple class that maintains the running average of a quantity
Example:
```
loss_avg = RunningAverage()
loss_avg.update(2)
loss_avg.update(4)
loss_avg() = 3
```
"""
def __init__(self):
self.steps = 0
self.total = 0
def update(self, val):
self.total += val
self.steps += 1
def __call__(self):
return self.total/float(self.steps)
def set_logger(log_path):
"""Set the logger to log info in terminal and file `log_path`.
In general, it is useful to have a logger so that every output to the terminal is saved
in a permanent file. Here we save it to `model_dir/train.log`.
Example:
```
logging.info("Starting training...")
```
Args:
log_path: (string) where to log
"""
logger = logging.getLogger()
logger.setLevel(logging.INFO)
if not logger.handlers:
# Logging to a file
file_handler = logging.FileHandler(log_path)
file_handler.setFormatter(logging.Formatter('%(asctime)s:%(levelname)s: %(message)s'))
logger.addHandler(file_handler)
# Logging to console
stream_handler = logging.StreamHandler()
stream_handler.setFormatter(logging.Formatter('%(message)s'))
logger.addHandler(stream_handler)
def save_dict_to_json(d, json_path):
"""Saves dict of floats in json file
Args:
d: (dict) of float-castable values (np.float, int, float, etc.)
json_path: (string) path to json file
"""
with open(json_path, 'w') as f:
# We need to convert the values to float for json (it doesn't accept np.array, np.float, )
d = {k: float(v) for k, v in d.items()}
json.dump(d, f, indent=4)
def save_checkpoint(state, is_best, checkpoint):
"""Saves model and training parameters at checkpoint + 'last.pth.tar'. If is_best==True, also saves
checkpoint + 'best.pth.tar'
Args:
state: (dict) contains model's state_dict, may contain other keys such as epoch, optimizer state_dict
is_best: (bool) True if it is the best model seen till now
checkpoint: (string) folder where parameters are to be saved
"""
filepath = os.path.join(checkpoint, 'last.pth.tar')
if not os.path.exists(checkpoint):
print("Checkpoint Directory does not exist! Making directory {}".format(checkpoint))
os.mkdir(checkpoint)
else:
print("Checkpoint Directory exists! ")
torch.save(state, filepath)
if is_best:
shutil.copyfile(filepath, os.path.join(checkpoint, 'best.pth.tar'))
def load_checkpoint(checkpoint, model, optimizer=None, data_parallel=False):
"""Loads model parameters (state_dict) from file_path. If optimizer is provided, loads state_dict of
optimizer assuming it is present in checkpoint.
Args:
checkpoint: (string) filename which needs to be loaded
model: (torch.nn.Module) model for which the parameters are loaded
optimizer: (torch.optim) optional: resume optimizer from checkpoint
"""
if not os.path.exists(checkpoint):
raise("File doesn't exist {}".format(checkpoint))
checkpoint = torch.load(checkpoint)
state_dict = checkpoint['state_dict']
if data_parallel:
state_dict = {'module.' + k: state_dict[k] for k in state_dict}
model.load_state_dict(state_dict)
if optimizer:
optimizer.load_state_dict(checkpoint['optim_dict'])
return checkpoint
def mkdir_if_not_exists(d):
if not os.path.exists(d):
os.makedirs(d)