-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathtrain.py
268 lines (219 loc) · 11.5 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
"""Train the model"""
import argparse
import logging
import os
import numpy as np
import random
import torch
import torch.nn as nn
from torch.autograd import Variable
import torch.optim as optim
from tqdm import tqdm
import utils
import model.net as net
import model.dataset as dataset
from evaluate import evaluate
parser = argparse.ArgumentParser()
parser.add_argument('--train_target_dir', default=None,
help="Directory containing the train target set")
parser.add_argument('--train_lr_dir', default=None,
help="Directory containing the train lr set")
parser.add_argument('--train_key_dir', default=None,
help="Directory containing the train key set")
parser.add_argument('--val_target_dir', default=None,
help="Directory containing the val target set")
parser.add_argument('--val_lr_dir', default=None,
help="Directory containing the val lr set")
parser.add_argument('--val_key_dir', default=None,
help="Directory containing the val key set")
parser.add_argument('--file_fmt', default='frame%d.png',
help="Dataset file fmt")
parser.add_argument('--model_dir', default=None,
help="Directory containing params.json")
parser.add_argument('--num_steps', default=None, type=int,
help="Number of batches per epoch. Full dataset when set to None.")
parser.add_argument('--eval_batch_size', default=1,
help="Batch size for evaluation.")
parser.add_argument('--restore_file', default=None,
help="Optional, name of the file in --model_dir containing weights to reload before \
training") # 'best' or 'train'
parser.add_argument('--gpus', default=None, type=int,
help="Number of gpus to use. Default is to use all available.")
parser.add_argument('--no_restore_optim', dest='restore_optim', action='store_false',
help="Don't restore optimizer state when restore file is provided.")
parser.set_defaults(restore_optim=True)
parser.add_argument('--restore_only_weights', dest='restore_all', action='store_false',
help="Don't restore optimizer state when restore file is provided.")
parser.set_defaults(restore_all=True)
def train(model, optimizer, loss_fn, metrics, dataloader, params, num_steps):
"""Train the model on `num_steps` batches
Args:
model: (torch.nn.Module) the neural network
optimizer: (torch.optim) optimizer for parameters of model
loss_fn: a function that takes batch_output and batch_labels and computes the loss for the batch
dataloader: (DataLoader) a torch.utils.data.DataLoader object that fetches training data
params: (Params) hyperparameters
num_steps: (int) number of batches to train on, each of size params.batch_size
"""
# set model to training mode
model.train()
# summary for current training loop and a running average object for loss
summ = {k: [] for k in metrics.metrics + ['losses']}
loss_avg = utils.RunningAverage()
# Use tqdm for progress bar
with tqdm(total=len(dataloader)) as t:
for i, (train_batch, target, sample_ids) in enumerate(dataloader):
# End the epoch after `num_steps`
if (num_steps is not None) and (i == num_steps):
break
train_batch = net.batch_to_device(train_batch, params.device)
target = net.batch_to_device(target, params.device)
# compute model output and loss
output_batch = model(train_batch)
loss = loss_fn(output_batch, target)
# clear previous gradients, compute gradients of all variables wrt loss
optimizer.zero_grad()
loss.backward()
# performs updates using calculated gradients
optimizer.step()
# Evaluate summaries only once in a while
if i % params.save_summary_steps == 0:
# extract data from torch Variable, move to cpu, convert to numpy arrays
output_batch = {k: output_batch[k].data.cpu() for k in output_batch}
target = {k: target[k].data.cpu() for k in target}
# compute all metrics on this batch
metrics_batch = metrics(output_batch, target)
for metric in metrics_batch:
summ[metric] += metrics_batch[metric]
summ['losses'].append(loss.item())
# update the average loss
loss_avg.update(loss.item())
t.set_postfix(loss='{:06.4f}'.format(loss_avg()))
t.update()
# compute mean of all metrics in summary
metrics_mean = {metric: np.mean(summ[metric])
for metric in metrics.metrics + ['losses']}
metrics_string = " ; ".join("{}: {:06.4f}".format(k, v)
for k, v in metrics_mean.items())
logging.info("- Train metrics: " + metrics_string)
def train_and_evaluate(model, train_dataloader, val_dataloader, optimizer, loss_fn, metrics, params, model_dir,
restore_file=None, restore_all=True, num_steps=None):
"""Train the model and evaluate every epoch.
Args:
model: (torch.nn.Module) the neural network
train_dataloader: (DataLoader) a torch.utils.data.DataLoader object that fetches training data
val_dataloader: (DataLoader) a torch.utils.data.DataLoader object that fetches validation data
optimizer: (torch.optim) optimizer for parameters of model
loss_fn: a function that takes batch_output and batch_labels and computes the loss for the batch
params: (Params) hyperparameters
model_dir: (string) directory containing config, weights and log
restore_file: (string) optional- name of file to restore from (without its extension .pth.tar)
"""
start_epoch = 0
best_val_psnr = 0.0
# reload weights from restore_file if specified
if restore_file is not None:
restore_path = os.path.join(
args.model_dir, args.restore_file + '.pth.tar')
if restore_all:
logging.info("Restoring all parameters from {}".format(restore_path))
checkpoint = utils.load_checkpoint(restore_path, model,
optimizer if args.restore_optim else None, params.data_parallel)
if 'epoch' in checkpoint.keys():
start_epoch = checkpoint['epoch']
if 'best_val_psnr' in checkpoint.keys():
best_val_psnr = checkpoint['best_val_psnr']
else:
logging.info("Restoring only weights parameters from {}".format(restore_path))
_ = utils.load_checkpoint(restore_path, model,
optimizer if args.restore_optim else None, params.data_parallel)
logging.info('Learning rate after resotration:' + utils.format_lr_info(optimizer))
scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer, 'min', patience=params.lr_patience, min_lr=1e-7,
verbose=True)
for epoch in range(start_epoch, params.num_epochs):
# Run one epoch
logging.info("Epoch {}/{}".format(epoch + 1, params.num_epochs))
# compute number of batches in one epoch (one full pass over the training set)
train(model, optimizer, loss_fn, metrics, train_dataloader, params, num_steps)
# Evaluate for one epoch on validation set
val_metrics, _ = evaluate(model, loss_fn, val_dataloader, params, metrics, num_steps)
# Adjust learning rate
if epoch >= params.fix_lr_epochs:
scheduler.step(val_metrics['loss'])
logging.info('Learning rate after lr scheduler step:' + utils.format_lr_info(optimizer))
val_psnr = val_metrics[params.base_metric]
is_best = val_psnr >= best_val_psnr
# Save weights
state_dict = model.state_dict()
if params.data_parallel:
state_dict = {k.partition('module.')[2]: state_dict[k] for k in state_dict}
utils.save_checkpoint({'epoch': epoch + 1,
'best_val_psnr': best_val_psnr,
'state_dict': state_dict,
'optim_dict': optimizer.state_dict()},
is_best=is_best,
checkpoint=model_dir)
# If best_eval, best_save_path
if is_best:
logging.info("- Found new best accuracy")
best_val_psnr = val_psnr
# Save best val metrics in a json file in the model directory
best_json_path = os.path.join(
model_dir, "metrics_val_best_weights.json")
utils.save_dict_to_json(val_metrics, best_json_path)
# Save latest val metrics in a json file in the model directory
last_json_path = os.path.join(
model_dir, "metrics_val_last_weights.json")
utils.save_dict_to_json(val_metrics, last_json_path)
if __name__ == '__main__':
# Load the parameters from json file
args = parser.parse_args()
json_path = os.path.join(args.model_dir, 'params.json')
assert os.path.isfile(
json_path), "No json configuration file found at {}".format(json_path)
params = utils.Params(json_path)
# use GPU if available
params.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
params.data_parallel = torch.cuda.device_count() > 1
# Set the random seed for reproducible experiments
torch.manual_seed(230)
random.seed(230)
np.random.seed(230)
if params.device.type == 'cuda':
torch.cuda.manual_seed(230)
# Set the logger
utils.set_logger(os.path.join(args.model_dir, 'train.log'))
# Create the input data pipeline
logging.info("Loading the datasets...")
# fetch dataloaders
params.eval_batch_size = args.eval_batch_size
train_dl = dataset.get_dataloader(args.train_target_dir, args.train_lr_dir, args.train_key_dir,
params, frame_fmt=args.file_fmt, train=True)
val_dl = dataset.get_dataloader(args.val_target_dir, args.val_lr_dir, args.val_key_dir,
params, frame_fmt=args.file_fmt, train=False)
logging.info("- done.")
# Define the model and optimizer
model = net.Net(params)
model.to(params.device)
# Metric
metrics = net.Metrics(params)
# Initialize model and get param gorups with per-group optimizer configurations
param_groups = net.configure_parameters(model, args.model_dir, params)
if params.data_parallel:
logging.info('Using data parallel model.')
device_ids = list(range(args.gpus)) if args.gpus is not None else None
model = nn.DataParallel(model, device_ids=device_ids)
# Instantiate optimizer
optimizer = optim.Adam(param_groups, lr=params.learning_rate,
betas=(0.9, 0.999), eps=1e-8)
logging.info('Learning rates initialized to:' + utils.format_lr_info(optimizer))
# Set LR scheduler patience
if not 'lr_patience' in params.dict:
params.lr_patience = 5
logging.info("LR schedule patience set to %d epochs." % params.lr_patience)
# fetch loss function and metrics
loss_fn = net.loss_fn(params)
# Train the model
logging.info("Starting training for {} epoch(s)".format(params.num_epochs))
train_and_evaluate(model, train_dl, val_dl, optimizer, loss_fn, metrics, params, args.model_dir,
args.restore_file, args.restore_all, args.num_steps)