Skip to content

Latest commit

 

History

History
406 lines (255 loc) · 11.8 KB

change_image_bg.md

File metadata and controls

406 lines (255 loc) · 11.8 KB

Image Tuning

Image tuning is the change in the background of an image through image segmentation. The key role of image segmentation is to remove the objects segmented from the image and place it in the new background created. This is done by producing a mask for the image and combining it with the modified background. Deeplabv3+ model trained on pascalvoc dataset is used. The model supports 20 common object categories which means you can change the background of these objects as you desired. The objects are

person,bus,car,aeroplane, bicycle, ,motorbike,bird, boat, bottle,  cat, chair, cow, dinningtable, dog, horse pottedplant, sheep, sofa, train, tv

Image Tuning features supported are:

Change the background of an image with a picture

sample.jpg

alt1

background.jpg

alt2

We intend to change the background of our sample image with this image. We can do this easily with just five lines of code.

import pixellib
from pixellib.tune_bg import alter_bg


change_bg = alter_bg(model_type = "pb")
change_bg.load_pascalvoc_model("xception_pascalvoc.pb")
change_bg.change_bg_img(f_image_path = "sample.jpg",b_image_path = "background.jpg", output_image_name="new_img.jpg")
import pixellib
from pixellib.tune_bg import alter_bg

change_bg = alter_bg(model_type = "pb")
change_bg.load_pascalvoc_model("xception_pascalvoc.pb")

Line 1-4: We imported pixellib and from pixellib we imported in the class alter_bg. Instance of the class is created and within the class we added a parameter model_type and set it to pb. we finally loaded the deeplabv3+ model. PixelLib supports two deeplabv3+ models, keras and tensorflow model. The keras model is extracted from the tensorflow model's checkpoint. The tensorflow model performs better than the keras model extracted from its checkpoint. We will make use of tensorflow model. Download the model from here.

change_bg.change_bg_img(f_image_path = "sample.jpg",b_image_path = "background.jpg", output_image_name="new_img.jpg")

We called the function change_bg_img that handled changing the background of the image with a picture.

It takes the following parameter:

f_image_path: This is the foreground image, the image which background would be changed.

b_image_path: This is the image that will be used to change the backgroud of the foreground image.

output_image_name: The new image with a changed background.

Output Image

alt3

Wow! We have successfully changed the background of our image.

Detection of target object

In some applications you may not want to detect all the objects in an image or video, you may just want to target a particular object. By default the model detects all the objects it supports in an image or video. It is possible to filter other objects' detections and detect a target object in an image or video.

sample2.jpg

sam

change_bg.change_bg_img(f_image_path = "sample2.jpg",b_image_path = "background.jpg", output_image_name="new_img.jpg")

Output Image

sam

It successfully change the image's background, but our goal is to change the background of the person in this image. We are not comfortable with the other objects showing, this is because car is one the objects supported by the model. Therefore there is need to modify the code to detect a target object.

import pixellib
from pixellib.tune_bg import alter_bg

change_bg = alter_bg(model_type = "pb")
change_bg.load_pascalvoc_model("xception_pascalvoc.pb")
change_bg.change_bg_img(f_image_path = "sample2.jpg",b_image_path = "background.jpg", output_image_name="new_img.jpg", detect = "person")

It is still the same code except we introduced an extra parameter detect in the function.

change_bg.change_bg_img(f_image_path = "sample2.jpg",b_image_path = "background.jpg", output_image_name="new_img.jpg", detect = "person")

The parameter detect is set to person.

Output Image

sam2

This is the new image with only our target object shown.  If we intend to show only the cars present in this image. We just have to change the value of the parameter person to car.

change_bg.change_bg_img(f_image_path = "sample2.jpg",b_image_path = "background.jpg", output_image_name="new_img.jpg", detect = "car")

Output Image

sam3

Assign a distinct color to the background of an image

You can choose to assign any distinct color to the background of your image. This is also possible with five lines of code.

import pixellib
from pixellib.tune_bg import alter_bg

change_bg = alter_bg(model_type = "pb")
change_bg.load_pascalvoc_model("xception_pascalvoc.pb")
change_bg.color_bg("sample2.jpg", colors = (0,0,255), output_image_name="colored_bg.jpg", detect = "person")

It is very similar to the code used above for changing the background of an image with a picture. The only difference is that we replaced the function change_bg_img to color_bg the function that will handle color change.

change_bg.color_bg("sample2.jpg", colors = (0, 0, 255), output_image_name="colored_bg.jpg", detect = "person")

The function color_bg takes the parameter colors and we provided the RGB value of the color we want to use. We want the image to have a blue background and the color's RGB value is set to blue which is (0, 0, 255).

Colored Image

alt4

Note:

You can assign any color to the background of your image, just provide the RGB value of the color.

Grayscale the background of an image

import pixellib
from pixellib.tune_bg import alter_bg

change_bg = alter_bg(model_type = "pb")
change_bg.load_pascalvoc_model("xception_pascalvoc.pb")
change_bg.gray_bg("sample2.jpg",output_image_name="gray_img.jpg", detect = "person")
change_bg.gray_bg("sample.jpg",output_image_name="gray_img.jpg", detect = "person")

It is still the same code except we called the function gray_bg to grayscale the background of the image.

Output Image

alt7

Blur the background of an image

sample3.jpg

alt_sam2

You can also apply the effect of bluring the background of your image. You can control how blur the background will be.

change_bg.blur_bg("sample2.jpg", low = True, output_image_name="blur_img.jpg")

We called the function blur_bg to blur the background of the image and set the blurred effect to be low. There are three parameters that control the degree in which the background is blurred.

low: When it is set to true the background is blurred slightly.

moderate: When it is set to true the background is moderately blurred.

extreme: When it is set to true the background is deeply blurred.

blur_low

The image is blurred with a low effect.

alt5

change_bg.blur_bg("sample2.jpg", moderate = True, output_image_name="blur_img.jpg")

We want to moderately blur the background of the image, we set moderate to true.

blur_moderate

The image is blurred with a moderate effect.

alt6

change_bg.blur_bg("sample2.jpg", extreme = True, output_image_name="blur_img.jpg")

We want to deeply blurred the background of the image and we set extreme to true.

blur_extreme

The image is blurred with a deep effect.

alt7

Full code

import pixellib
from pixellib.tune_bg import alter_bg

change_bg = alter_bg(model_type = "pb")
change_bg.load_pascalvoc_model("xception_pascalvoc.pb")
change_bg.blur_bg("sample2.jpg", moderate = True, output_image_name="blur_img.jpg")

Blur a target object in an image

change_bg.blur_bg("sample2.jpg", extreme = True, output_image_name="blur_img.jpg", detect = "person")

Our target object is a person.

sam3

change_bg.blur_bg("sample2.jpg", extreme = True, output_image_name="blur_img.jpg", detect = "car")

Our target object is a car.

sam3

Obtain output arrays

You can obtain the output arrays of your changed image....

Obtain output array of the changed image array

import pixellib
from pixellib.tune_bg import alter_bg
import cv2

change_bg = alter_bg(model_type = "pb")
change_bg.load_pascalvoc_model("xception_pascalvoc.pb")
output = change_bg.change_bg_img(f_image_path = "sample.jpg",b_image_path = "background.jpg", detect = "person")
cv2.imwrite("img.jpg", output)

Obtain output array of the colored image

import pixellib
from pixellib.tune_bg import alter_bg
import cv2

change_bg = alter_bg(model_type = "pb")
change_bg.load_pascalvoc_model("xception_pascalvoc.pb")
output = change_bg.color_bg("sample.jpg", colors = (0, 0, 255), detect = "person")
cv2.imwrite("img.jpg", output)

Obtain output array of the blurred image

import pixellib
from pixellib.tune_bg import alter_bg
import cv2

change_bg = alter_bg(model_type = "pb")
change_bg.load_pascalvoc_model("xception_pascalvoc.pb")
output = change_bg.blur_bg("sample.jpg", moderate = True, detect = "person")
cv2.imwrite("img.jpg", output)

Obtain output array of the grayed image

import pixellib
from pixellib.tune_bg import alter_bg
import cv2

change_bg = alter_bg(model_type = "pb")
change_bg.load_pascalvoc_model("xception_pascalvoc.pb")
output = change_bg.gray_bg("sample.jpg", detect = "person")
cv2.imwrite("img.jpg", output)

Process frames directly with Image Tuning...

Create a virtual background for frames

import pixellib
from pixellib.tune_bg import alter_bg
import cv2

change_bg = alter_bg(model_type = "pb")
change_bg.load_pascalvoc_model("xception_pascalvoc.pb")

capture = cv2.VideoCapture(0)
while True:
    ret, frame = capture.read()
    output = change_bg.change_frame_bg(frame, "flowers.jpg", detect = "person")
    cv2.imshow("frame", output)
    if  cv2.waitKey(25) & 0xff == ord('q'):
        break

Blur frames

import pixellib
from pixellib.tune_bg import alter_bg
import cv2

change_bg = alter_bg(model_type = "pb")
change_bg.load_pascalvoc_model("xception_pascalvoc.pb")

capture = cv2.VideoCapture(0)
while True:
    ret, frame = capture.read()
    output = change_bg.blur_frame(frame, extreme = True, detect = "person")
    cv2.imshow("frame", output)
    if  cv2.waitKey(25) & 0xff == ord('q'):
        break

Color frames

import pixellib
from pixellib.tune_bg import alter_bg
import cv2

change_bg = alter_bg(model_type = "pb")
change_bg.load_pascalvoc_model("xception_pascalvoc.pb")

capture = cv2.VideoCapture(0)
while True:
    ret, frame = capture.read()
    output = change_bg.color_frame(frame, colors = (255, 255, 255), detect = "person")
    cv2.imshow("frame", output)
    if  cv2.waitKey(25) & 0xff == ord('q'):
        break

Grayscale frames

import pixellib
from pixellib.tune_bg import alter_bg
import cv2

change_bg = alter_bg(model_type = "pb")
change_bg.load_pascalvoc_model("xception_pascalvoc.pb", detect = "person")

capture = cv2.VideoCapture(0)
while True:
    ret, frame = capture.read()
    output = change_bg.gray_frame(frame)
    cv2.imshow("frame", output)
    if  cv2.waitKey(25) & 0xff == ord('q'):
        break

Read the tutorial on blurring, coloring and grayscaling background of videos and camera's feeds.