forked from harryliew/WGAN-QC
-
Notifications
You must be signed in to change notification settings - Fork 0
/
wgan_qc_resnet2.py
614 lines (508 loc) · 24 KB
/
wgan_qc_resnet2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
from __future__ import print_function
import argparse
import random
import torch
import torch.nn as nn
import torch.nn.parallel
import torch.nn.functional as F
import torch.backends.cudnn as cudnn
import torch.optim as optim
import torch.utils.data
import torchvision.datasets as dset
import torchvision.transforms as transforms
import torchvision.utils as vutils
import torch.autograd as autograd
import os
import shutil
from glob import *
from cvxopt import matrix, spmatrix, sparse, solvers
import numpy as np
from copy import deepcopy
import models.resnet2 as resnet
####################################################################################
# WGAN-QC (Wasserstein GANs with Quadratic Transport Cost)
# Code is adopted from WGAN and modified by Huidong Liu (Hui-Dong Liu)
# Email: huidliu@cs.stonybrook.edu; h.d.liew@gmail.com
####################################################################################
parser = argparse.ArgumentParser()
parser.add_argument('--dataset', required=True, help='mnist | cifar10 | lsun | imagenet | folder | lfw | others')
parser.add_argument('--dataroot', required=True, help='path to dataset')
parser.add_argument('--workers', type=int, default=2, help='number of data loading workers')
parser.add_argument('--batchSize', type=int, default=64, help='input batch size')
parser.add_argument('--imageSize', type=int, default=64, help='the height / width of the input image to network')
parser.add_argument('--nz', type=int, default=128, help='size of the latent z vector')
parser.add_argument('--ngf', type=int, default=64)
parser.add_argument('--ndf', type=int, default=64)
parser.add_argument('--ngf_max', type=int, default=512)
parser.add_argument('--ndf_max', type=int, default=512)
parser.add_argument('--K', type=float, default=-1.0, help='the coef in transport cost, <=0 meaning K = 1/dim')
parser.add_argument('--res_ratio', type=float, default=0.1, help='resnet block ratio')
parser.add_argument('--epochs', type=int, default=2000, help='number of epochs for training')
parser.add_argument('--epoch', type=int, default=1, help='starting epoch (to continue training)')
parser.add_argument('--Giters', type=int, default=500000, help='number of Generator iterations, default=50k')
parser.add_argument('--Giter', type=int, default=0, help='starting Generator iteration (to continue training)')
parser.add_argument('--lrD', type=float, default=1e-4, help='learning rate for D, default=1e-4')
parser.add_argument('--lrG', type=float, default=1e-4, help='learning rate for G, default=1e-4')
parser.add_argument('--beta1', type=float, default=0.5, help='beta1 for adam. default=0.5')
parser.add_argument('--beta2', type=float, default=0.999, help='beta2 for adam. default=0.999')
parser.add_argument('--lr_anneal', type=float, default=1.0, help='learning rate decay rate, default=1.0')
parser.add_argument('--milestones', default='50000,150000', help='milestones of lr anneal.')
parser.add_argument('--gamma', type=float, default=0.1, help='gamma for optimal transport regularization')
parser.add_argument('--EMA', type=float, default=0.999, help='Exponential Moving Average, default=0, range: [0,1)')
parser.add_argument('--EMA_startIter', type=int, default=80000, help='start EMA from which G iter')
parser.add_argument('--no_cuda', action='store_true', default=False, help='disable CUDA training')
parser.add_argument('--retrain', action='store_true', default=False, help='re-train or not')
parser.add_argument('--pin_mem', action='store_true', help='use pin memory or not')
parser.add_argument('--gpu_ids', default='0', help='GPU ids visible to CUDA')
parser.add_argument('--netG', default='', help="path to netG (to continue training)")
parser.add_argument('--netD', default='', help="path to netD (to continue training)")
parser.add_argument('--Diters', type=int, default=1, help='number of D iters')
parser.add_argument('--DOptIters', type=int, default=1, help='number of iters of regression of D, default=1')
parser.add_argument('--output_dir', default=None, help='folder to store output samples and checkpoints')
parser.add_argument('--RMSprop', action='store_true', help='Whether to use RMSprop (default is Adam)')
parser.add_argument('--Adagrad', action='store_true', help='Whether to use Adagrad (default is Adam)')
parser.add_argument('--IS_freq', type=int, default=10000, help='IS evaluation frequency if IS is activated')
parser.add_argument('--FID_freq', type=int, default=10000, help='FID evaluation frequency if FID is activated')
parser.add_argument('--verbose_freq', type=int, default=10, help='verbose frequency')
parser.add_argument('--genImg_num', type=int, default=64, help='number of generated images')
parser.add_argument('--genImg_freq', type=int, default=500, help='generate image frequency')
parser.add_argument('--save_ckpt_freq', type=int, default=10000, help='save checkpoint frequency')
parser.add_argument('--save_ckpt_epoch_freq', type=int, default=10, help='save checkpoint in how many epochs')
args = parser.parse_args()
print(args)
nz = int(args.nz)
ngf = int(args.ngf)
ndf = int(args.ndf)
ngf_max = int(args.ngf_max)
ndf_max = int(args.ndf_max)
K = args.K
res_ratio = args.res_ratio
batchSize = int(args.batchSize)
Diters = int(args.Diters)
DOptIters = int(args.DOptIters)
epochs = int(args.epochs)
epoch = int(args.epoch)
Giters = int(args.Giters)
Giter = int(args.Giter)
gamma = args.gamma
EMA = args.EMA
EMA_startIter = int(args.EMA_startIter)
gpu_ids = args.gpu_ids
lr_anneal = args.lr_anneal
milestones = list(map(int, args.milestones.split(',')))
IS_freq = int(args.IS_freq)
FID_freq = int(args.FID_freq)
verbose_freq = int(args.verbose_freq)
genImg_freq = int(args.genImg_freq)
genImg_num = int(args.genImg_num)
genImg_num_sroot = int(genImg_num ** 0.5)
save_ckpt_freq = int(args.save_ckpt_freq)
save_ckpt_epoch_freq = int(args.save_ckpt_epoch_freq)
os.environ['CUDA_VISIBLE_DEVICES'] = gpu_ids
output_dir = args.output_dir
if output_dir is None:
print("WARNING: No output_dir provided. Results will be saved to ./outputs")
output_dir = './outputs'
if not os.path.exists(output_dir):
os.makedirs(output_dir)
else:
if args.retrain:
shutil.rmtree(output_dir)
os.makedirs(output_dir)
img_path = '{0}/images'.format(output_dir)
checkpoint_path = '{0}/checkpoints'.format(output_dir)
if not os.path.exists(img_path):
os.makedirs(img_path)
if not os.path.exists(checkpoint_path):
os.makedirs(checkpoint_path)
log_fileName = '{0}/log.txt'.format(output_dir)
with open(log_fileName, 'a') as f:
f.write('\n{}\n'.format(str(args)))
args.manualSeed = random.randint(1, 10000)
print("Random Seed: ", args.manualSeed)
random.seed(args.manualSeed)
torch.manual_seed(args.manualSeed)
cudnn.benchmark = True
device = torch.device("cuda:{0}".format(0) if torch.cuda.is_available() else "cpu")
args.cuda = not args.no_cuda and torch.cuda.is_available()
if torch.cuda.is_available() and not args.cuda:
print("WARNING: You have a CUDA device, so you should probably run with cuda")
Optimizer = 'Adam'
if args.RMSprop:
Optimizer = 'RMSprop'
if args.Adagrad:
Optimizer = 'Adagrad'
class CenterCropLongEdge(object):
"""Crops the given PIL Image on the long edge.
Args:
size (sequence or int): Desired output size of the crop. If size is an
int instead of sequence like (h, w), a square crop (size, size) is
made.
"""
def __call__(self, img):
"""
Args:
img (PIL Image): Image to be cropped.
Returns:
PIL Image: Cropped image.
"""
return transforms.functional.center_crop(img, min(img.size))
def __repr__(self):
return self.__class__.__name__
if args.dataset in ['imagenet', 'folder', 'lfw']:
# folder dataset
dataset = dset.ImageFolder(root=args.dataroot,
transform=transforms.Compose([
CenterCropLongEdge(),
transforms.Resize(args.imageSize),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
]))
nc = 3
elif args.dataset == 'lsun':
dataset = dset.LSUN(root=args.dataroot, classes=['bedroom_train'],
transform=transforms.Compose([
transforms.Resize(args.imageSize),
transforms.CenterCrop(args.imageSize),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
]))
nc = 3
elif args.dataset == 'cifar10':
dataset = dset.CIFAR10(root=args.dataroot, download=True,
transform=transforms.Compose([
transforms.Resize(args.imageSize),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
])
)
nc = 3
elif args.dataset == 'mnist':
dataset = dset.MNIST(root=args.dataroot,
train=True, # download=True,
transform=transforms.Compose([
transforms.Resize(args.imageSize),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
])
)
nc = 1
else:
dataset = dset.ImageFolder(root=args.dataroot,
transform=transforms.Compose([
transforms.Resize(args.imageSize),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
])
)
nc = 3
assert dataset
dataloader = torch.utils.data.DataLoader(dataset, batch_size=args.batchSize,
shuffle=True, num_workers=int(args.workers),
drop_last=True, pin_memory=args.pin_mem)
# custom weights initialization called on netG and netD
def weights_init_D(m):
classname = m.__class__.__name__
if classname.find('Conv') != -1:
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='leaky_relu')
elif classname.find('BatchNorm') != -1:
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)
def weights_init_G(m):
classname = m.__class__.__name__
if classname.find('Conv') != -1:
nn.init.kaiming_normal_(m.weight, mode='fan_in', nonlinearity='leaky_relu')
elif classname.find('BatchNorm') != -1:
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)
netG = resnet.ResNet_G(nz, args.imageSize, nfilter=ngf, nfilter_max=ngf_max, res_ratio=res_ratio)
netD = resnet.ResNet_D(nz, args.imageSize, nfilter=ndf, nfilter_max=ndf_max, res_ratio=res_ratio)
if torch.cuda.device_count() > 1:
print("use", torch.cuda.device_count(), "GPUs!")
netG = nn.DataParallel(netG)
netD = nn.DataParallel(netD)
netG.apply(weights_init_G)
if args.netG != '': # load checkpoint if needed
netG.load_state_dict(torch.load(args.netG))
print(netG)
netD.apply(weights_init_D)
if args.netD != '':
netD.load_state_dict(torch.load(args.netD))
print(netD)
with open(log_fileName, 'a') as f:
print(netD, file=f)
print(netG, file=f)
data_dim = nc * args.imageSize * args.imageSize
if K <= 0:
K = 1.0 / data_dim
Kr = np.sqrt(K)
LAMBDA = 2 * Kr * gamma * 2
real = torch.FloatTensor(batchSize, nc, args.imageSize, args.imageSize).to(device)
noise = torch.FloatTensor(batchSize, nz, 1, 1).to(device)
one = torch.FloatTensor([1])
mone = one * -1
ones = torch.ones(batchSize)
one, mone, ones = one.to(device), mone.to(device), ones.to(device)
netD = netD.to(device)
netG = netG.to(device)
criterion = torch.nn.MSELoss()
def build_optimizerD(Optimizer='Adam'):
# build optimizer
if Optimizer == 'RMSprop':
optimizerD = optim.RMSprop(netD.parameters(), lr = args.lrD)
elif Optimizer == 'Adam':
optimizerD = optim.Adam(netD.parameters(), lr=args.lrD, betas=(args.beta1, args.beta2))
elif Optimizer == 'Adagrad':
optimizerD = optim.Adagrad(netD.parameters(), lr=args.lrD)
else:
optimizerD = optim.RMSprop(netD.parameters(), lr = args.lrD)
return optimizerD
def build_optimizerG(Optimizer='Adam'):
# build optimizer
if Optimizer == 'RMSprop':
optimizerG = optim.RMSprop(netG.parameters(), lr=args.lrG)
elif Optimizer == 'Adam':
optimizerG = optim.Adam(netG.parameters(), lr=args.lrG, betas=(args.beta1, args.beta2))
elif Optimizer == 'Adagrad':
optimizerG = optim.Adagrad(netG.parameters(), lr=args.lrG)
else:
optimizerG = optim.RMSprop(netG.parameters(), lr=args.lrG)
return optimizerG
def build_lr_scheduler(optimizer, milestones, lr_anneal, last_epoch=-1):
scheduler = optim.lr_scheduler.MultiStepLR(optimizer, milestones, gamma=lr_anneal, last_epoch=-1)
return scheduler
def load_last_checkpoint(netD, netG, checkpoint_path):
checkpoints = glob('{}/*.pth'.format(checkpoint_path))
checkpoint_ids = [(int(f.split('_')[2]), int(f.split('_')[4]), f) for f in [p.split('/')[-1].split('.')[0] for p in checkpoints]]
if not checkpoint_ids:
epoch = 1
Giter = 1
print('No netD or netG loaded!')
else:
epoch, Giter, _ = max(checkpoint_ids, key=lambda item: item[1])
netD.load_state_dict(torch.load('{}/netD_epoch_{}_Giter_{}.pth'.format(checkpoint_path, epoch, Giter)))
print('netD_epoch_{}_Giter_{}.pth loaded!'.format(epoch, Giter))
netG.load_state_dict(torch.load('{}/netG_epoch_{}_Giter_{}.pth'.format(checkpoint_path, epoch, Giter)))
print('netG_epoch_{}_Giter_{}.pth loaded!'.format(epoch, Giter))
Giter += 1
return epoch, Giter
###############################################################################
###################### Prepare linear programming solver ######################
solvers.options['show_progress'] = False
solvers.options['glpk'] = {'msg_lev': 'GLP_MSG_OFF'}
A = spmatrix(1.0, range(batchSize), [0]*batchSize, (batchSize,batchSize))
for i in range(1,batchSize):
Ai = spmatrix(1.0, range(batchSize), [i]*batchSize, (batchSize,batchSize))
A = sparse([A,Ai])
D = spmatrix(-1.0, range(batchSize), range(batchSize), (batchSize,batchSize))
DM = D
for i in range(1,batchSize):
DM = sparse([DM, D])
A = sparse([[A],[DM]])
cr = matrix([-1.0/batchSize]*batchSize)
cf = matrix([1.0/batchSize]*batchSize)
c = matrix([cr,cf])
pStart = {}
pStart['x'] = matrix([matrix([1.0]*batchSize),matrix([-1.0]*batchSize)])
pStart['s'] = matrix([1.0]*(2*batchSize))
###############################################################################
def read_data(data_iter, batch_id):
data = data_iter.next()
batch_id += 1
real_cpu, _ = data
real_data = real_cpu.clone().to(device)
real.resize_as_(real_data).copy_(real_data)
noise.resize_(batchSize, nz, 1, 1).normal_(0, 1)
with torch.no_grad():
fake = netG(noise).detach()
return real, fake, real_cpu, noise, batch_id
def comput_dist(real, fake):
num_r = real.size(0)
num_f = fake.size(0)
real_flat = real.view(num_r, -1)
fake_flat = fake.view(num_f, -1)
real3D = real_flat.unsqueeze(1).expand(num_r, num_f, data_dim)
fake3D = fake_flat.unsqueeze(0).expand(num_r, num_f, data_dim)
# compute squared L2 distance
dif = real3D - fake3D
dist = 0.5 * dif.pow(2).sum(2).squeeze()
return dist
def Wasserstein_LP(dist):
b = matrix(dist.cpu().double().numpy().flatten())
sol = solvers.lp(c, A, b, primalstart=pStart, solver='glpk')
offset = 0.5 * (sum(sol['x'])) / batchSize
sol['x'] = sol['x'] - offset
pStart['x'] = sol['x']
pStart['s'] = sol['s']
return sol
def approx_OT(sol):
###########################################################################
################ Compute the OT mapping for each fake data ################
# ResMat = np.array(sol['s']).reshape((batchSize,batchSize))
# mapping = torch.from_numpy(np.argmin(ResMat, axis=0)).long().to(device)
ResMat = np.array(sol['z']).reshape((batchSize, batchSize))
mapping = torch.from_numpy(np.argmax(ResMat, axis=0)).long().to(device)
return mapping
###########################################################################
###############################################################################
################## Optimal Transport Regularization ###########################
###############################################################################
## f(y) = inf { f(x) + c(x,y) }
## 0 \in grad_x { f(x) + c(x,y) }
###############################################################################
def OT_regularization(output_fake, fake, RF_dif):
output_fake_grad = torch.ones(output_fake.size()).to(device)
gradients = autograd.grad(outputs=output_fake, inputs=fake,
grad_outputs=output_fake_grad,
create_graph=True, retain_graph=True, only_inputs=True)[0]
n = gradients.size(0)
RegLoss = 0.5 * ((gradients.view(n, -1).norm(dim=1) / (2*Kr) - Kr/2 * RF_dif.view(n, -1).norm(dim=1)).pow(2)).mean()
fake.requires_grad = False
return RegLoss
def update_average(model_tgt, model_src, beta):
with torch.no_grad():
param_dict_src = dict(model_src.named_parameters())
for p_name, p_tgt in model_tgt.named_parameters():
p_src = param_dict_src[p_name]
assert(p_src is not p_tgt)
p_tgt.data.copy_(beta*p_tgt.data + (1. - beta)*p_src.data)
def load_fixed_noise(img_path, device):
file_name = '{0}/fixed_noise.pth'.format(img_path)
if os.path.isfile(file_name):
fixed_noise = torch.load(file_name, map_location=torch.device('cpu'))
else:
fixed_noise = torch.FloatTensor(genImg_num, nz, 1, 1).normal_(0, 1)
torch.save(fixed_noise, file_name)
return fixed_noise.to(device)
def save_checkpoint(checkpoint_path, epoch, Giter):
torch.save(netG_test.state_dict(), '{0}/netG_epoch_{1}_Giter_{2}.pth'.format(checkpoint_path, epoch, Giter))
torch.save(netD.state_dict(), '{0}/netD_epoch_{1}_Giter_{2}.pth'.format(checkpoint_path, epoch, Giter))
def save_images(img_path, real_cpu):
real_cpu = real_cpu[:genImg_num].mul(0.5).add(0.5)
vutils.save_image(real_cpu, '{0}/real_samples.png'.format(img_path), nrow=genImg_num_sroot)
netG_test.eval()
with torch.no_grad():
fake = netG_test(fixed_noise)
fake.data = fake.cpu().data.mul(0.5).add(0.5)
vutils.save_image(fake.data, '{0}/fake_samples_{1}.png'.format(img_path, Giter), nrow=genImg_num_sroot)
fixed_noise = load_fixed_noise(img_path, device)
num_batches = len(dataloader)
data_iter = iter(dataloader)
batch_id = 0
optimizerD, optimizerG = build_optimizerD(Optimizer), build_optimizerG(Optimizer)
schedulerD = build_lr_scheduler(optimizerD, milestones, lr_anneal)
schedulerG = build_lr_scheduler(optimizerG, milestones, lr_anneal)
epoch, Giter = load_last_checkpoint(netD, netG, checkpoint_path)
WD = torch.FloatTensor(1)
if lr_anneal != 1.0:
for i in range(Giter-1):
schedulerD.step()
schedulerG.step()
netG_copied = False
if EMA > 0 and Giter >= EMA_startIter:
netG_test = deepcopy(netG)
netG_copied = True
else:
netG_test = netG
while epoch <= epochs and Giter <= Giters:
###########################################################################
# (1) Update the Discriminator networks D
###########################################################################
for p in netD.parameters(): # reset requires_grad
p.requires_grad = True # they are set to False below in netG update
netD.train()
netG.train()
###########################################################################
# Deep Regression for discriminator
###########################################################################
##################### perform deep regression for D #######################
j = 0
while j < Diters:
j += 1
if batch_id >= num_batches:
data_iter = iter(dataloader)
batch_id = 0
if epoch % save_ckpt_epoch_freq == 0:
save_checkpoint(checkpoint_path, epoch, Giter)
epoch += 1
real, fake, real_cpu, noise, batch_id = read_data(data_iter, batch_id)
dist = comput_dist(real, fake)
dist = K * dist
sol = Wasserstein_LP(dist)
if LAMBDA > 0:
mapping = approx_OT(sol)
real_ordered = real[mapping] # match real and fake
RF_dif = real_ordered - fake
# construct target
target = torch.from_numpy(np.array(sol['x'])).float()
target = target.squeeze().to(device)
for k in range(DOptIters):
netD.zero_grad()
fake.requires_grad_()
if fake.grad is not None:
fake.grad.data.zero_()
output_real = netD(real)
output_fake = netD(fake)
output_real, output_fake = output_real.squeeze(), output_fake.squeeze()
output_R_mean = output_real.mean(0).view(1)
output_F_mean = output_fake.mean(0).view(1)
L2LossD_real = criterion(output_R_mean[0], target[:batchSize].mean())
L2LossD_fake = criterion(output_fake, target[batchSize:])
L2LossD = 0.5 * L2LossD_real + 0.5 * L2LossD_fake
if LAMBDA > 0:
RegLossD = OT_regularization(output_fake, fake, RF_dif)
TotalLoss = L2LossD + LAMBDA * RegLossD
else:
TotalLoss = L2LossD
TotalLoss.backward()
optimizerD.step()
WD = output_R_mean - output_F_mean # Wasserstein Distance
#################### Discriminator Regression done ########################
###########################################################################
# (2) Update the Generator network G
###########################################################################
for p in netD.parameters():
p.requires_grad = False # frozen D
###########################################################################
## Update G
###########################################################################
netG.zero_grad()
fake = netG(noise)
output_fake = netD(fake)
output_F_mean_after = output_fake.mean(0).view(1)
output_F_mean_after.backward(mone)
optimizerG.step()
schedulerD.step()
schedulerG.step()
if EMA > 0:
if not netG_copied and Giter >= EMA_startIter:
netG_test = deepcopy(netG)
netG_copied = True
if Giter >= EMA_startIter:
update_average(netG_test, netG, EMA)
Giter += 1
G_growth = output_F_mean_after - output_F_mean
if Giter % verbose_freq == 0:
if LAMBDA > 0:
log_str = '[{:d}/{:d}][{:d}] | WD {:.9f} | real_mean {:.9f} | fake_mean {:.9f} | G_growth {:.9f} | ' \
'L2LossD_real {:.9f} | L2LossD_fake {:.9f} | ' \
'L2LossD {:.9f} | RegLossD {:.9f} | TotalLoss {:.9f}'.format(
epoch, epochs, Giter,
WD.item(), output_R_mean.item(), output_F_mean.item(), G_growth.item(),
L2LossD_real.item(), L2LossD_fake.item(),
L2LossD.item(), RegLossD.item(), TotalLoss.item())
else:
log_str = '[{:d}/{:d}][{:d}] | WD {:.9f} | real_mean {:.9f} | fake_mean {:.9f} | G_growth {:.9f} | ' \
'L2LossD_real {:.9f} | L2LossD_fake {:.9f} | ' \
'L2LossD {:.9f} | TotalLoss {:.9f}'.format(
epoch, epochs, Giter,
WD.item(), output_R_mean.item(), output_F_mean.item(), G_growth.item(),
L2LossD_real.item(), L2LossD_fake.item(),
L2LossD.item(), TotalLoss.item())
print(log_str)
with open(log_fileName, 'a') as f:
f.write('{}\n'.format(log_str))
if Giter % genImg_freq == 0:
save_images(img_path, real_cpu)
if Giter % save_ckpt_freq == 0:
save_checkpoint(checkpoint_path, epoch, Giter)